www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cosinus Näherung
Cosinus Näherung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cosinus Näherung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:44 Di 26.01.2010
Autor: lubalu

Es geht hier um eine Zwischenbehauptung. In der ganzen Aufgabe ist zu zeigen, dass cos im Intervall I=[0,2[ genau eine Nullstelle [mm] x_0=\pi/2 [/mm] besitzt. Dabei ist diese Beh. die erste Zwischenbehauptung.

Beh.: cos(2) [mm] \le -\bruch{1}{3}. [/mm]

Hallo.

Hier muss man die Reihendarstellung des Cosinus verwenden.

cos(x) = [mm] \summe_{k=0}^{N} (-1)^k [/mm] * [mm] \bruch{x^{2k}}{(2k)!} [/mm] + [mm] r_{2N+2}(x) [/mm]
mit [mm] |r_{2N+2}(x)| \le \bruch{|x|^{2N+2}}{(2N+2)!} [/mm] für |x|< 2N+3.

Meine Frage nun: Für x setze ich in diese Darstellung 2 ein, aber welchen Wert muss ich für N nehmen? In meiner Lösung wird N=1 gewählt. Woher weiß ich, dass ich N=1 wählen muss? Kommt das auf die Bedingung für |x| an? Für N=0 wäre 2<3, also die Bedingung auch erfüllt, genau so wie für N=2... Oder muss ich einfach ausprobieren, für welches N die gesuchte Näherung rauskommt?

        
Bezug
Cosinus Näherung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Mi 27.01.2010
Autor: lubalu

Hallo.

Gibts hier keine Hinweise? Oder hab ich die Frage unverständlich formuliert oder so?



Bezug
        
Bezug
Cosinus Näherung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:49 Mi 27.01.2010
Autor: pi-roland

Hallo,

so ganz sehe ich zwar in deiner Aufgabenstellung nicht durch, aber ich nehme an, dass es darum geht, welcher Art die Funktion ist, die durch die Taylor-Reihe heraus kommt.
Setzt du N=0 erhältst du eine lineare Funktion. Die kann nur eine Nullstelle haben. Somit ist damit nicht nachweisbar, dass nur eine existiert und nicht noch mehr. Für N=1 hat man schon eine quadratische Funktion, die zwei Nullstellen hat. Liegt aber nur eine davon im Intervall, so ist es klar, dass [mm] \cos(x) [/mm] auch nur eine Nullstelle hat.
Hoffe, dass das die Frage beantwortet.
Viel Erfolg noch,

Roland.

Bezug
                
Bezug
Cosinus Näherung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 Mi 27.01.2010
Autor: lubalu

Ja,jetzt ist's mir schon klarer. Man muss einfach probieren bis man auf eine sinnvolle Lösung kommt, die einen weiterbringt.

Danke!

Bezug
                        
Bezug
Cosinus Näherung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Mi 27.01.2010
Autor: pi-roland

Hallo nochmal,

es hat weniger was mit probieren als mit denken zu tun. Wenn in einem Intervall 3 Nullstellen sein sollen, dann sollte man schon die Näherung (also die Taylor-Reihe) so machen, dass sie 4. Grades ist und damit 4 Nullstellen hat. Wenn nun nur 3 drin liegen, dann kann man sich recht sicher sein, dass das auch bei der originalen (nicht genäherten) Funktion der Fall ist.
Im Großen und Ganzen keine Hexerei.
Viel Erfolg noch,

Roland.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de