www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Cossinussatz beweisen
Cossinussatz beweisen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cossinussatz beweisen: und zwar vektoriell
Status: (Frage) beantwortet Status 
Datum: 23:03 Mi 02.10.2013
Autor: Coxy

Aufgabe
Siehe Bild unten

Hallo,
ich habe mal ein Foto meines Problems hochgeladen:
http://s1.directupload.net/file/d/3398/5uhp2dg9_jpg.htm

Mein Problem ist das in meine Uni-Mathe-Vorkurs heute der Professor gezeigt hat wie man den cossinussatz vektoriell beweist.
Ich habe aber ab der 3 Zeile (dort wo *-b genommen wird) GARNICHTS mehr verstanden.
Könnte mir jemand versuchen das etwas verständlicher zu erklären bzw. den zwischen schritt. Ich habe mir die Gleichung schon fast eine Stunde angeguckt, aber ich fühle mich wie vor einer Wand.
Freundliche Grüße


        
Bezug
Cossinussatz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Mi 02.10.2013
Autor: M.Rex


> Siehe Bild unten
> Hallo,
> ich habe mal ein Foto meines Problems hochgeladen:
> http://s1.directupload.net/file/d/3398/5uhp2dg9_jpg.htm

>

> Mein Problem ist das in meine Uni-Mathe-Vorkurs heute der
> Professor gezeigt hat wie man den cossinussatz vektoriell
> beweist.
> Ich habe aber ab der 3 Zeile (dort wo *-b genommen wird)
> GARNICHTS mehr verstanden.

Du skalarmultiplizierst die beiden Gleichungen, die ja Vektoren darstellen, mit [mm] -\vec{b} [/mm]

Ewas ausführlicher ist der Beweis bei []poenitz-net (Kapitel 7.5.2) erklärt.


> Könnte mir jemand versuchen das etwas verständlicher zu
> erklären bzw. den zwischen schritt. Ich habe mir die
> Gleichung schon fast eine Stunde angeguckt, aber ich fühle
> mich wie vor einer Wand.
> Freundliche Grüße

>

Generell kann ich die Seite []poenitz-net nur empfehlen, um Grundlagen aufzuarbeiten oder zu wiederholen.

Marius

Bezug
        
Bezug
Cossinussatz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:45 Mi 02.10.2013
Autor: Fulla

Hallo Coxy!

In der dir vorliegenden Rechnung wird die Gleichung [mm] $\overrightarrow a-\overrightarrow [/mm] b + [mm] \overrightarrow [/mm] c=0$ (*) einmal mit [mm] $\overrightarrow [/mm] a$ mulitpliziert - das ergibt

(1) [mm] $a^2-\overrightarrow a*\overrightarrow b+\overrightarrow a*\overrightarrow [/mm] c=0$

Dann wird die Gleichung (*) mit [mm] $-\overrightarrow [/mm] b$ multipliziert - das ergibt

(2) [mm] $-\overrightarrow a*\overrightarrow [/mm] b [mm] +b^2-\overrightarrow b*\overrightarrow [/mm] c=0$

Dann werden beide Gleichungen addiert, d.h. linke Seite von (1) plus linke Seite von (2) und rechte Seite von (1) plus rechte Seite von (2). Umgeordnet und zusammengefasst ergibt das

[mm] $a^2+b^2-2\overrightarrow a*\overrightarrow b=(\overrightarrow b-\overrightarrow a)*\overrightarrow [/mm] c$

Mit [mm] $\overrightarrow b-\overrightarrow a=\overrightarrow [/mm] c$ und [mm] $\overrightarrow a*\overrightarrow b=a*b*\cos(\gamma)$ [/mm] folgt die Behauptung.

Beim Abschreiben sind dir da ein paar Flüchtigkeitsfehler untergekommen.

Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de