www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Cotangens Summenformel
Cotangens Summenformel < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cotangens Summenformel: Hilfe benötigt
Status: (Frage) beantwortet Status 
Datum: 00:02 Mi 30.01.2013
Autor: Fagl

Aufgabe
Zeigen Sie für ein geeignetes a∈R:
cot(x)=1/x+ax+o(x) , für x→0

Identifizieren Sie a.

Habe diese Aufgabe zur Klausurvorbereitung bekommen, leider ohne muster lösung und bin jetzt ein wenig überfordert.
Meine idee wäre den Cotangens als Summe zu schreiben, um dann zu zeigen dass die ersten Summenglieder 1/x und ax sind, und die restlichen eben vernachlässigbar klein werden, wenn man das hinetwa so ausdrücken darf. Allerdings haben wir in der Vorlesung keine Summenformel für den Cotangens kennen gelernt und im Web hab ich nur eine recht verwirrende mit Bernoilli Zahlen finden können. Deshalb wollte ich mal hier fragen ob das überhaupt der richtige weg ist bzw. Wie man denn hier am geschicktesten zur lösung kommt.
Vielen dank
Euer fagl


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cotangens Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Mi 30.01.2013
Autor: Al-Chwarizmi


> Zeigen Sie für ein geeignetes a∈R:
> cot(x)=1/x+ax+o(x) , für x→0
>  
> Identifizieren Sie a.
>  Habe diese Aufgabe zur Klausurvorbereitung bekommen,
> leider ohne muster lösung und bin jetzt ein wenig
> überfordert.
> Meine idee wäre den Cotangens als Summe zu schreiben, um
> dann zu zeigen dass die ersten Summenglieder 1/x und ax
> sind, und die restlichen eben vernachlässigbar klein
> werden, wenn man das hinetwa so ausdrücken darf.
> Allerdings haben wir in der Vorlesung keine Summenformel
> für den Cotangens kennen gelernt und im Web hab ich nur
> eine recht verwirrende mit Bernoulli Zahlen finden können.
> Deshalb wollte ich mal hier fragen ob das überhaupt der
> richtige weg ist bzw. Wie man denn hier am geschicktesten
> zur lösung kommt.
>  Vielen dank
>  Euer fagl


Guten Abend !

Man darf (hoffentlich) annehmen, dass du weißt, wie
cot(x) definiert ist ...

Ich würde mal versuchen, eine Taylorentwicklung der
Funktion f mit  f(x) = cot(x)-1/x  aufzustellen ...

LG ,    Al-Chw.

Bezug
        
Bezug
Cotangens Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Mi 30.01.2013
Autor: fred97

Übersetzt lautet die Aufgabe so:

Zeige, dass


   [mm] a:=\limes_{x\rightarrow 0} \bruch{x*cos(x)-sin(x)}{x^2*sin(x)} [/mm]

existiert und berechne a.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de