www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Curve Approximation
Curve Approximation < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Curve Approximation: kleinste Quadrate Methode
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:06 Fr 17.04.2009
Autor: Bluemchen09

Aufgabe
Gegeben sind n+1 Messpunkte [mm] Q_{k} (Q_{0},...,Q_{n}). [/mm] Gesucht ist die B-Spline-Kurve p-ter Ordnung mit h+1 Kontrollpunkte [mm] P_{i} (P_{0},...,P_{h}), [/mm] die die Punktmenge am besten approximiert. Es gilt: n>h und h>=p>=1. Bedingung:
-Kurve enthält den ersten und letzten Messpunkt d.h. [mm] Q_{0} [/mm] = C(0) und [mm] Q_{n}=C(1). [/mm]
-Kurve wird im Sinne der kleinsten Quadrate angenähert

Hallo Forum,

bei der Aufgabe bzw. dem Lösungsweg habe ich folgendes Verständnis-Problem. Vorweg erst einmal die Definition der Kurve:
[mm] C(t)=\summe_{i=0}^{h}N_{i,p}(t)*P_{i} [/mm]

1. letzter und erster Kurvenpunkt werden interpoliert (siehe Aufgabenstellung)
2. Die anderen Punkte werden wie folgt berechnet:
[mm] f(P_{1},...,P_{h-1})=\summe_{k=1}^{n-1}|Q_{k}-C(t_{k})|^2 [/mm]

dann setzt man:
[mm] R_{k}= Q_{k}-N_{0,p}(t_{k})*Q_{0}-N_{h,p}(t_{k})*Q_{n} [/mm]

dann folgt nach einsetzen:

[mm] f(P_{1},...,P_{h-1})=\summe_{k=1}^{n-1}[Q_{k}*Q_{k}-2(\summe_{i=1}^{h-1}N_{i,p}(t_{k})*P_{i}*Q_{k})+(summe_{i=1}^{h-1}N_{i,p}(t_{k})*P_{i})*(summe_{i=1}^{h-1}N_{i,p}(t_{k})*P_{i})] [/mm]

Um die Funktion jetzt zu minimieren, muss ich ja die partiellen Aleitungen nach den Unbekannten bilden, d.h. nach [mm] P_{i}. [/mm]
Und da liegt jetzt mein Problem!
Hier steht nämlich irgendetwas davon, dass die Funktion f() eigentlich ein elliptisches Paraboloid in den Variablen [mm] P_{1},...,P_{h-1}ist. [/mm] Und das man deshalb f() für jedes [mm] P_{g} [/mm] unterscheiden kann und die gemeinsamen Nullstellen finden kann.
Ich verstehe diese Aussage nicht, ich hätte jetzt die partiellen Ableitung nach [mm] P_{k} [/mm] gebildet. Aber das geht ja anscheind nicht. Warum?

Vielleicht findet sich ja jemand, der mir da helfen kann. Wäre ganz nett.
Gruß

        
Bezug
Curve Approximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 Fr 17.04.2009
Autor: Bluemchen09

Uppps,
die Frage ist ja zweimal drin. Diese kann gelöscht werden! Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de