www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL
DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 Do 24.07.2014
Autor: petapahn

Aufgabe
Löse die DGL
1. [mm] x'(t)=t^2*sin(x-1), [/mm] x(2)=1
2. [mm] x'(t)=\bruch{x}{t}-\sqrt{1-\bruch{x}{t}}, [/mm] x(1)=1/2


Guten Abend,
kann mir jemand helfen bei den DGL. Ich bräuchte einfach einen Ansatz (also zB Trennung der Variablen etc) zu beiden DGL und bitte nicht einfach ein ausprobierte Lösung.
Bei 1. seh ich schon mal dass die konstante Fkt x(t)=1 eine Lösung ist. Bei 2. hab ichs über Substitution probiert, komme aber nicht hin.
Vielen Dank schon mal
LG,
petapahn


        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Do 24.07.2014
Autor: abakus


> Löse die DGL
> 1. [mm]x'(t)=t^2*sin(x-1),[/mm] x(2)=1
> 2. [mm]x'(t)=\bruch{x}{t}-\sqrt{1-\bruch{x}{t}},[/mm] x(1)=1/2

>

> Guten Abend,
> kann mir jemand helfen bei den DGL. Ich bräuchte einfach
> einen Ansatz (also zB Trennung der Variablen etc) zu beiden
> DGL und bitte nicht einfach ein ausprobierte Lösung.
> Bei 1. seh ich schon mal dass die konstante Fkt x(t)=1 eine
> Lösung ist.

Nicht nur die. Auch [mm] x(t)=1+k*$\pi$. [/mm]
Gruß Abakus

> Bei 2. hab ichs über Substitution probiert,
> komme aber nicht hin.
> Vielen Dank schon mal
> LG,
> petapahn

>

Bezug
                
Bezug
DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Do 24.07.2014
Autor: petapahn

Hallo abakus,

Bei [mm] x(t)=1+k*\pi [/mm] stimmt dann aber die Anfangsbedingung nicht mehr, oder?
Fällen jamendem konkrete Lösungsansätze ein für die Lösung von 1. und 2.?
LG petapahn

Bezug
                        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Do 24.07.2014
Autor: MathePower

Hallo petapahn,

> Hallo abakus,
>  
> Bei [mm]x(t)=1+k*\pi[/mm] stimmt dann aber die Anfangsbedingung
> nicht mehr, oder?


Ja, aus der Anfangsbedingung ist das k zu ermitteln.


>  Fällen jamendem konkrete Lösungsansätze ein für die
> Lösung von 1. und 2.?


Das Problem bei 1. ist hier das

[mm]\integral_{}^{}{\bruch{1}{\sin\left(x-1\right)} \ dx}[/mm]

Verwende hier die Substitution [mm]\tan\left(\bruch{x-1}{2}\right)=u[/mm]

Bei 2. hilft die Substitution [mm]t*u=x[/mm] weiter.


>  LG petapahn


Gruss
MathePower

Bezug
        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 00:21 Fr 25.07.2014
Autor: rmix22


> Löse die DGL
>  1. [mm]x'(t)=t^2*sin(x-1),[/mm] x(2)=1
>  2. [mm]x'(t)=\bruch{x}{t}-\sqrt{1-\bruch{x}{t}},[/mm] x(1)=1/2
>  
> Guten Abend,
>  kann mir jemand helfen bei den DGL. Ich bräuchte einfach
> einen Ansatz (also zB Trennung der Variablen etc) zu beiden
> DGL und bitte nicht einfach ein ausprobierte Lösung.
> Bei 1. seh ich schon mal dass die konstante Fkt x(t)=1 eine
> Lösung ist. Bei 2. hab ichs über Substitution probiert,
> komme aber nicht hin.
> Vielen Dank schon mal
>  LG,
>  petapahn
>  

Die zweite DGL ist eine gleichgradige DGL (o.a. Ähnlichkeits-DGL). Die passende Substitution ist [mm] $\frac{x(t)}{t}=z(t)$. [/mm]
Mit $x(t)=t*z(t)$ und [mm] $\frac{dx}{dt}=z(t)+t*\frac{dz}{dt}$ [/mm] kommst du dann auf eine DGL in z und t, welche sich durch Trennen der Variablen lösen lässt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de