www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL
DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:58 Di 31.07.2012
Autor: JohnLH

Aufgabe
geg: [mm] y''(x)+x^{3}y(x)=x [/mm]
Ges: allgemeine Lösung

Hallo, ich hätte gerne ein Tipp von euch. Ich würde mal raten, das diese DGL mit Euler zu lösen ist, aber die Koeffizienten stimmen dafür nicht! Vielen Dank!

        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Di 31.07.2012
Autor: MathePower

Hallo JohnLH,

> geg: [mm]y''(x)+x^{3}y(x)=x[/mm]
>  Ges: allgemeine Lösung
>  Hallo, ich hätte gerne ein Tipp von euch. Ich würde mal
> raten, das diese DGL mit Euler zu lösen ist, aber die
> Koeffizienten stimmen dafür nicht! Vielen Dank!


Es ist eine nicht identische verschwindende Lösung [mm]y_{1}[/mm]
der homogenen DGL

[mm]y''(x)+x^{3}y(x)=0[/mm]

zu finden.

Dann kannst Du diese DGL mit der Substitution

[mm]z\left(x\right)=\bruch{d}{dx}\left(\bruch{y}{y_{1}}\right)[/mm]

in eine lineare homogene DGL erster Ordnung zurückführen.

Alternative ist der Potenzreihenansatz.


Gruss
MathePower

Bezug
                
Bezug
DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 Di 31.07.2012
Autor: JohnLH

Hi MathePower!

Danke für die Antwort, was meinst du mit:

> Dann kannst Du diese DGL mit der Substitution
>  
> [mm]z\left(x\right)=\bruch{d}{dx}\left(\bruch{y}{y_{1}}\right)[/mm]

?

Ist es [mm] z=\bruch{y}{y'} [/mm] ?

Bezug
                        
Bezug
DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Di 31.07.2012
Autor: JohnLH

Bei dieser Substitution [mm] (z=\bruch{y}{y'} [/mm] ) bekomme ich:
[mm] \bruch{y'*(1-z')}{z} [/mm] + [mm] x^{3}*z=0 [/mm]
, welches noch alles komplizierter macht. Ist es richtig so?


Bezug
                                
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Di 31.07.2012
Autor: MathePower

Hallo JohnLH,

> Bei dieser Substitution [mm](z=\bruch{y}{y'}[/mm] ) bekomme ich:
>  [mm]\bruch{y'*(1-z')}{z}[/mm] + [mm]x^{3}*z=0[/mm]
>  , welches noch alles komplizierter macht. Ist es richtig
> so?
>  


Nein, es ist nicht so richtig.


Gruss
MathePower

Bezug
                        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 16:16 Di 31.07.2012
Autor: MathePower

Hallo JohnLH,

> Hi MathePower!
>  
> Danke für die Antwort, was meinst du mit:
>  
> > Dann kannst Du diese DGL mit der Substitution
>  >  
> > [mm]z\left(x\right)=\bruch{d}{dx}\left(\bruch{y}{y_{1}}\right)[/mm]
>  
> ?
>  
> Ist es [mm]z=\bruch{y}{y'}[/mm] ?


Das ist schon so richtig:

[mm]z\left(x\right)=\bruch{d}{dx}\left(\bruch{y}{y_{1}}\right)[/mm]

,wobei [mm]y_{1}[/mm] Lösung der homogenen DGL ist.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de