www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. Ordnung homogen
DGL 1. Ordnung homogen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. Ordnung homogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 07.06.2006
Autor: Sappy80

Die Aufgabe
Aufgabe
4y'=y/x²


hab ich durch umformen auf diese Form gebracht.

y'= y* [mm] \bruch{1}{4x²} [/mm]

Dann komme ich durch auf Trennung der Variablen und Integration auf

ln lyl = -4*ln(x)
(wobei ich mir nicht sicher bin, ob das so richtig ist.

Jetzt müsste ich doch die efunktion anwenden. Wie funktioniert das wenn auch der rechten Seite auch ein ln steht?
Dank schonmal für eure Unterstützung! LG Sappy





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
DGL 1. Ordnung homogen: Korrektur (edit.)
Status: (Antwort) fertig Status 
Datum: 16:07 Mi 07.06.2006
Autor: Roadrunner

Hallo Sappy,

[willkommenmr] !!


> Dann komme ich durch auf Trennung der Variablen und
> Integration auf
>  
> ln lyl = -4*ln(x)

Das stimmt auf der rechten Seite leider nicht!

Da muss durch die Integration von [mm] $\bruch{1}{4*x^2} [/mm] \ = \ [mm] \bruch{1}{4}*x^{-2}$ [/mm] und Anwendung der MBPotenzregel stehen: [mm] $\bruch{1}{4}*\bruch{x^{-1}}{-1}+ [/mm] \ [mm] \red{C} [/mm] \ = \ [mm] -\bruch{1}{4}*x^{-1}+C [/mm] \ = \ [mm] -\bruch{1}{4x}+C$ [/mm] .


Du hast also auch noch die Integrationskonstante $+ \ C$ vergessen.


> Jetzt müsste ich doch die efunktion anwenden. Wie
> funktioniert das wenn auch der rechten Seite auch ein ln
> steht?

Es würde dann exakt wie auf der linken Seite auch funktionieren, dass die e-Funktion den [mm] $\ln(...)$ [/mm] aufhebt. Zuvor sollte man nur eines der MBLogarithmusgesetze anwenden: [mm] $m*\log_b(a) [/mm] \ = \ [mm] \log_b\left(a^m\right)$ [/mm] .


Gruß vom
Roadrunner


Bezug
                
Bezug
DGL 1. Ordnung homogen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mi 07.06.2006
Autor: Sappy80

Hallo Roadrunner, thx für die nette Begüßung und Reaktion :) Ja, da hab ich gleich mehrere Böcke geschossen, aber stimmt das

$ [mm] -4\cdot{}x^{-2} [/mm] $

muss es nicht [mm] 4*x^{-2} [/mm] (4*x in klammern) weil doch aus der Umformung
$ [mm] \bruch [/mm] {1}{4*x²}$ entsteht oder?

Bezug
                        
Bezug
DGL 1. Ordnung homogen: ist korrigiert
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Mi 07.06.2006
Autor: Roadrunner

Hallo Sappy!


Da habe ich mich etwas verhauen ... [sorry] !

Es ist aber in der obigen Antwort nun korrigiert.


Gruß vom
Roadrunner


Bezug
                                
Bezug
DGL 1. Ordnung homogen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Mi 07.06.2006
Autor: Sappy80

kein thema,..
vielen dank :) Hier wird man echt geholfen!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de