www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1. und 2. Ordnung
DGL 1. und 2. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1. und 2. Ordnung: Brauche dringend einen Tipp
Status: (Frage) beantwortet Status 
Datum: 13:20 So 01.07.2012
Autor: herbi_m

Aufgabe 1
a) y''(x) = -sin(x)

Aufgabe 2
b) y' = sin(x) [mm] \wurzel{y} [/mm]

Hallo!
Brauche ganz dringend einen Ansatz, we ich die folgenden Differentialgleichungen lösen kann! Ich schreibe in zwei Tagen eine Klausur und bei den beiden Aufgaben komme ich nicht weiter.
Kann ich die erste Aufgabe wie folgt umformen?
y'' + sin (x)
Dann würde ich das Polynom aufstellen: [mm] k^2 [/mm] + sin(x)
Dann p/q-Formel: k1 =  [mm] \wurzel{-sin(x)} [/mm] und k2 = [mm] -\wurzel{-sin(x)} [/mm]
Aber dann weiß ich nicht, was ich mit der negativen Wurzel machen soll! Das ist doch eine nicht-reelle Lösung?!
Bei der zweiten Aufgabe, dachte ich auch, dass ich erst das von der rechten auf die linke Seite rüberhole... und dann?!
Lg und vielen Dank!
herbi!

        
Bezug
DGL 1. und 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 So 01.07.2012
Autor: notinX

Hallo,

> a) y''(x) = -sin(x)
>  b) y' = sin(x) [mm]\wurzel{y}[/mm]
>  Hallo!
>  Brauche ganz dringend einen Ansatz, we ich die folgenden
> Differentialgleichungen lösen kann! Ich schreibe in zwei
> Tagen eine Klausur und bei den beiden Aufgaben komme ich
> nicht weiter.
>  Kann ich die erste Aufgabe wie folgt umformen?
>  y'' + sin (x)

nein, das ist keine Umformung. Da steht einfach ein Term. Aber Du kannst die erste Gleichung selbstverständlich so umformen:
[mm] $y''(x)+\sin [/mm] x=0$

>  Dann würde ich das Polynom aufstellen: [mm]k^2[/mm] + sin(x)

Was ist denn das für ein Polynom?

>  Dann p/q-Formel: k1 =  [mm]\wurzel{-sin(x)}[/mm] und k2 =
> [mm]-\wurzel{-sin(x)}[/mm]
>  Aber dann weiß ich nicht, was ich mit der negativen
> Wurzel machen soll! Das ist doch eine nicht-reelle
> Lösung?!

Schau Dir die DGL mal genau an. Im Prinzip ist das gar keine 'echte' DGL. Da steht 'die zweite Ableitung von y ist minus sinus'. Du brauchst also die Umkehrung der Ableitung und musst diese zweimal hintereinander ausführen.

>  Bei der zweiten Aufgabe, dachte ich auch, dass ich erst
> das von der rechten auf die linke Seite rüberhole... und
> dann?!

Das kannst Du wieder tun, bringt Dir aber nichts. Zum Ziel führt hier das Verfahren 'Trennen der Veränderlichen', kurz TdV.

>  Lg und vielen Dank!
>  herbi!

Gruß,

notinX

Bezug
                
Bezug
DGL 1. und 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 So 01.07.2012
Autor: herbi_m

Ja, cool! Danke für die schnelle Antwort!
Bei der ersten Aufgabe, dachte ich, ich müsste sie wie eine DGL 2. Ordnung behandeln, für die wir immer ein charakteristisches Polynom hatten!
Bin gar nicht auf die Idee gekommen, dass ich einfach zweimal aufleiten kann!
Hab jetzt für y(x) = sin(x)+c raus! Stimmt das dann?!
Für die zweite DGL habe ich jetzt nach Dem Trennen der Variablen für y= (-1/2 cos (x) [mm] +c)^2 [/mm] raus. Das erscheint mir aber sehr seltsam...
Wäre lieb, wenn da nochmal jemand drüber schauen könnte!
Besten Dank!
herbi

Bezug
                        
Bezug
DGL 1. und 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 So 01.07.2012
Autor: Diophant

Hallo,

> Bei der ersten Aufgabe, dachte ich, ich müsste sie wie
> eine DGL 2. Ordnung behandeln, für die wir immer ein
> charakteristisches Polynom hatten!

Es ist eine DGL 2. Ordnung.

> Bin gar nicht auf die Idee gekommen, dass ich einfach
> zweimal aufleiten kann!

Ich verstehe das nicht, da ich nicht weiß, was da wo hinaufgeleitet wird. Kann es sein, dass du integrieren meinst? ;-)

> Hab jetzt für y(x) = sin(x)+c raus! Stimmt das dann?!

Nein, das stimmt nicht. Man muss zweimal integrieren, und bei jeder Integration kommt eine Integrationskonstante hinzu!

> Für die zweite DGL habe ich jetzt nach Dem Trennen der
> Variablen für y= (-1/2 cos (x) [mm]+c)^2[/mm] raus. Das erscheint
> mir aber sehr seltsam...

Was soll daran seltsam sein: es ist richtig. :-)


Gruß, Diophant

Bezug
                                
Bezug
DGL 1. und 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 So 01.07.2012
Autor: herbi_m

Also, ich hatte mir folgendes gedacht:
y'' = -sin(x)
also muss y' die Aufleitung von -sin(x) sein, also cos(x) +c
demnach müsste dann doch y die Aufleitung von cos(x) + c sein!
Und da dachte ich, könnte ich das c einfach weglassen und nur cos(x) integrieren! wobei ich dann y= sin(x) + c erhalte....

Bezug
                                        
Bezug
DGL 1. und 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 So 01.07.2012
Autor: Diophant

Hallo,

> Also, ich hatte mir folgendes gedacht:
> y'' = -sin(x)
> also muss y' die Aufleitung von -sin(x) sein, also cos(x)
> +c
> demnach müsste dann doch y die Aufleitung von cos(x) + c
> sein!

Was ist Aufleiten??? Wenn man den Unsinn in der Schule verwendet, ok, dagegen kann man wohl nichts mehr tun. Aber wenn man DGLen löst, sollte man nicht Aufleiten sagen, sonder Integrieren.

> Und da dachte ich, könnte ich das c einfach weglassen und
> nur cos(x) integrieren! wobei ich dann y= sin(x) + c
> erhalte....

Eben mal so einfach c weglassen? Mathe ist zwar eine Kunst, aber eine, die festen Regeln gehorchen muss. Derartige künstlerische Freiheiten hat man also nicht!

Die Lösung geht so (merke es dir aber, und versprich mir eines: sag nie mehr 'Aufleiten'!):


y''=-sin(x)

[mm] y'=cos(x)+C_1 [/mm]

[mm] y=sin(x)+C_1*x+C_2 [/mm]


Gruß, Diophant


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de