www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 4.Ordnung
DGL 4.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 4.Ordnung: welcher Ansatz ?
Status: (Frage) beantwortet Status 
Datum: 12:51 Mo 08.12.2008
Autor: crashby

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
gegeben sei folgende DGL:

$ y^{4}-4y'''-y''+20y'-20y=5\left ( \cos(3x)+\sin(3x)\right) $

Bestimmen Sie mit dem Ansatz vom Typ der rechten Seite eine partikuläre Lösung von dieser DGL und beschreiben Sie damit die allgemeine Lösung.

Hallo,

ich weiß nicht so recht welchen Ansatz ich heir nehmen soll.
eine homogene Lösung habe ich bestimmt und die stimmt auch.
Sie lautet:

$ y_h(t)=c_1\cdot e^{2t}+t\cdot c_2\cdot  e^{2t}+c_3\cdot e^{\sqrt{5}\cdot t}+c_4\cdot e^{-\sqrt{5}\cdot t} $

Im Tutorium hatten wir bis jetzt nur sowas:

sei $  f_1(x)= 5\cos(3x) $ und $ f_2(x)=5\sin(3x) $

dann haben wir für $ f_1  $diesen Ansatz genommen:

$ y_S(x)=A\cdot sin(3x)+B\cdot cos(3x) $

wie mach ich das hier?
addiere ich beide Ansätze und mach daraus:

$ y_S(x)=A\cdot sin(3x)+B\cdot cos(3x) + C\cdot \sin(3x)+D\cdot \cos(3x) $  und bestimme dann $ A,B,C,D $ ?

greetz




        
Bezug
DGL 4.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mo 08.12.2008
Autor: Herby

Hallo Crashby,

du nimmst hier nur den Ansatz:

[mm] y_s=A*\sin(3x)+B*\cos(3x) [/mm]


Erklärung:

> gegeben sei folgende DGL:
>  
> [mm]y^{4}-4y'''-y''+20y'-20y=5\left ( \cos(3x)+\sin(3x)\right)[/mm]
>
> Bestimmen Sie mit dem Ansatz vom Typ der rechten Seite eine
> partikuläre Lösung von dieser DGL und beschreiben Sie damit
> die allgemeine Lösung.
>  Hallo,
>  
> ich weiß nicht so recht welchen Ansatz ich heir nehmen
> soll.
>  eine homogene Lösung habe ich bestimmt und die stimmt
> auch.
>  Sie lautet:
>  
> [mm]y_h(t)=c_1\cdot e^{2t}+t\cdot c_2\cdot e^{2t}+c_3\cdot e^{\sqrt{5}\cdot t}+c_4\cdot e^{-\sqrt{5}\cdot t}[/mm]
>
> Im Tutorium hatten wir bis jetzt nur sowas:
>  
> sei [mm]f_1(x)= 5\cos(3x)[/mm] und [mm]f_2(x)=5\sin(3x)[/mm]
>  
> dann haben wir für [mm]f_1 [/mm]diesen Ansatz genommen:
>  
> [mm]y_S(x)=A\cdot sin(3x)+B\cdot cos(3x)[/mm]
>  
> wie mach ich das hier?
>  addiere ich beide Ansätze und mach daraus:
>  
> [mm]y_s=A\cdot sin(3x)+B\cdot cos(3x) + C\cdot \sin(3x)+D\cdot \cos(3x)[/mm]

ich nenne mal deine A,B,C,D um in F,G,H,I

[mm] $y_s=F\cdot sin(3x)+G\cdot [/mm] cos(3x) + [mm] H\cdot \sin(3x)+I\cdot \cos(3x)$ [/mm]

umsortieren und ausklammern ergibt:

[mm] $y_s=(\underbrace{F+H}_{=A})*\sin(3x)+(\underbrace{G+I}_{=B})*\cos(3x)=A*\sin(3x)+B*\cos(3x)$ [/mm]


Liebe Grüße
Herby

Bezug
                
Bezug
DGL 4.Ordnung: MErci
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:13 Mo 08.12.2008
Autor: crashby

hey Herby,

vielen Dank. Na dann werd ich mal losrechnen.

später mehr...

Bezug
                        
Bezug
DGL 4.Ordnung: stimmt die Lösung
Status: (Frage) beantwortet Status 
Datum: 15:08 Mo 08.12.2008
Autor: crashby

Hey,

habe das raus:

$ [mm] y_{ges}(t)=y_H(t)+\frac{85}{2366}\cdot \sin(3t)-\frac{5}{338}\cdot \cos(3t) [/mm] $

kann das einer mal überprüfen ? ;)

lg

Bezug
                                
Bezug
DGL 4.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Mo 08.12.2008
Autor: fred97

Warum machst Du das nicht selbst ???
4 mal differenzieren, in die DGL. eingehen und sich nicht verrechnen !!!
FRED

Bezug
                                        
Bezug
DGL 4.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Mo 08.12.2008
Autor: crashby

Hallo Fred,

das habe ich gemacht und damit A,B bestimmt :) aber den ganzen Weg jetzt hier aufschreiben ist glaube ich nicht nötig.wobei ich kann ja A,B wieder in das LGS einsetzen.. Danke

cya



Bezug
                                
Bezug
DGL 4.Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:23 Di 09.12.2008
Autor: Herby

Hallo Crashby,

> Hey,
>  
> habe das raus:
>  
> [mm]y_{ges}(t)=y_H(t)+\frac{85}{2366}\cdot \sin(3t)-\frac{5}{338}\cdot \cos(3t)[/mm]

ich erhalte:

[mm] y_{ges}=y_{h}+\bruch{5}{238}\sin(3x)-\bruch{5}{238}\cos(3x) [/mm]


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de