www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL Mechanik
DGL Mechanik < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Mechanik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 13.10.2014
Autor: Killercat

Aufgabe
Ein zum Zeitpunkt
t=0
vom Nullpunkt aus mit der Geschwindigkeit v
unter dem Steigungswinkel [mm] \phi [/mm]
geworfener Gegenstand der Masse M
beschreibt unter dem Einfluß der
Erdbeschleunigung g=9,81m/s² eine Bahn (x(t),y(t)), welche durch die Gleichung:
[mm]M*\frac {d^2}{dt^2}(x(t),y(t)) = (0;-Mg)[/mm] beschrieben wird.
1)Finde x(t),y(t)
2)Berechne die Wurfweite
3)Sei v gegeben. Für welchen Winkel Phi ist die Wurfweite maximal


Guten Abend,

ich hänge etwas bei dieser Aufgabe, da ich a) kein Physikfan bin und b) Aufgaben von diesem Typ bei uns in der Grundlagenvorlesung nicht drankamen.

Bisher hab ich mir überlegt, daraus folgendes System zu machen:
I: [mm]m*x''(t) = 0 [/mm]
II: [mm]y''(t) = -g [/mm]
Das System würde man durch integrieren lösen, was bei der zweiten Gleichung ja kein Problem ist, was mir jetzt im ersten Schritt aber Probleme macht ist der Faktor [mm]mx''[/mm] Nach gängigen Regeln der Integration müsste das ja [mm] (x')^m[/mm] sein.

Vielen Dank schonmal
Tobias


        
Bezug
DGL Mechanik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mo 13.10.2014
Autor: wauwau

M ist doch die Masse un daher von t unabhängig als Konstante zu betrachten!

Bezug
        
Bezug
DGL Mechanik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:15 Di 14.10.2014
Autor: chrisno

Hallo Tobias,

ich habe Deinen Quellcode bearbeitet um die fehlenden Quadrate sichtbar zu machen.


Bezug
        
Bezug
DGL Mechanik: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Di 14.10.2014
Autor: fred97


> Ein zum Zeitpunkt
>  t=0
>  vom Nullpunkt aus mit der Geschwindigkeit v
>  unter dem Steigungswinkel [mm]\phi[/mm]
>  geworfener Gegenstand der Masse M
>  beschreibt unter dem Einfluß der
>  Erdbeschleunigung g=9,81m/s² eine Bahn (x(t),y(t)),
> welche durch die Gleichung:
>  [mm]M*\frac {d^2}{dt^2}(x(t),y(t)) = (0;-Mg)[/mm] beschrieben
> wird.
>  1)Finde x(t),y(t)
>  2)Berechne die Wurfweite
>  3)Sei v gegeben. Für welchen Winkel Phi ist die Wurfweite
> maximal
>  
> Guten Abend,
>  
> ich hänge etwas bei dieser Aufgabe, da ich a) kein
> Physikfan bin und b) Aufgaben von diesem Typ bei uns in der
> Grundlagenvorlesung nicht drankamen.
>  
> Bisher hab ich mir überlegt, daraus folgendes System zu
> machen:
>  I: [mm]m*x''(t) = 0[/mm]
>  II: [mm]y''(t) = -g[/mm]
>  Das System würde man
> durch integrieren lösen, was bei der zweiten Gleichung ja
> kein Problem ist, was mir jetzt im ersten Schritt aber
> Probleme macht ist der Faktor [mm]mx''[/mm] Nach gängigen Regeln
> der Integration müsste das ja [mm](x')^m[/mm] sein.

Uuaa ! Das ist keine gängige sondern eine absolut abenteuerliche Regel (völliger Unsinn !).

Da  die Konstante m=M [mm] \ne [/mm] 0 ist, folgt aus  [mm]m*x''(t) = 0[/mm]:

(*)    [mm]x''(t) = 0[/mm].

Bestimme also zunächst alle Funktionen x für die (*) gilt.

FRED

>  
> Vielen Dank schonmal
>  Tobias
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de