www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL Trennung d. Variable
DGL Trennung d. Variable < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Trennung d. Variable: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:35 Sa 26.01.2013
Autor: mike1988

Aufgabe
Lösen Sie die gegebene Differentialgleichung durch Trennung der Variablen:

[mm] m*\ddot{y} [/mm] = [mm] -m*g-k*\dot{y^{2}} [/mm]

Hallo liebes Forum!

Würde bitte dringend eure Unterstützung bei o. g. Aufgabe benötigen!

Ich bin mal wie folgt vorgegangen:

[mm] \ddot{y}=\bruch{d\dot{y}}{dt}=\bruch{d\dot{y}}{dy}*\bruch{d{y}}{dt}=\bruch{d\dot{y}}{dy}*\dot{y} [/mm]

Eingesetzt ergibt dies:

[mm] m*\bruch{d\dot{y}}{dy}*\dot{y}+k*\dot{y}^{2} [/mm] = -m*g

Nun habe ich versucht, auf der linken Seite das [mm] \dot{y} [/mm] herauszuheben, was mir allerdings nicht gelingt, da es einmal in erster und einmal in zweiter Potenz vorhanden ist!

Kann mit diesbezüglich jemand einen Tipp zur Vorgehensweise geben??


Vielen lieben Dank!

Lg

        
Bezug
DGL Trennung d. Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Sa 26.01.2013
Autor: Richie1401

Hallo,

du kannst zunächst [mm] \dot{y}(x)=:z(x) [/mm] substituieren und diese DGL dann lösen, und dann wieder rücksubstituieren. Das ist vermutlich die beste und schnellste Variante.

Grüße

Bezug
                
Bezug
DGL Trennung d. Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 Sa 26.01.2013
Autor: mike1988

Hallo Richie!

Vielen Dank für deine rasche Antwort, nur leider verstehe ich dies nicht so ganz!

Wenn ich  $ [mm] \dot{y}(x)=:z(x) [/mm] $ substituiere dan erhalte ich ja:

$ [mm] m\cdot{}\bruch{d\dot{y}}{dy}\cdot{}z+k\cdot{}z^{2} [/mm] = [mm] -m\cdot{g} [/mm]  $

Hilft mir ja auch nicht sonderlich weiter!





Bezug
                        
Bezug
DGL Trennung d. Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Sa 26.01.2013
Autor: Richie1401

Hallo,

nein, gehe von deiner ursprünglichen DGL aus:

[mm] m\ddot{y}=-mg-k\dot{y}^2 [/mm]

Dann erhältst du:

[mm] m\dot{z}\equiv m\frac{dz}{dt}=-mg-kz^2 [/mm]

Dividieren der Gleichung durch m und eventuelle Setzen von [mm] \omega=\frac{k}{m} [/mm] lässt die DGL schon einmal freundliche ausschauen.

[mm] \dot{z}=-g-\omega z^2 [/mm]   (*)

Löse (*) nun durch Trennung der Variablen. Hast du dies gemacht, so stelle so um, dass du eine Gleichung der Form z(t)=... da stehen hast, um dann y(t) durch triviale Integration von z(t) zu erhalten.

Bezug
                                
Bezug
DGL Trennung d. Variable: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Sa 26.01.2013
Autor: mike1988

Danke für deine tolle und ausführliche Erklärung!

Ich habe nun die Gleichung [mm] \integral{dt} [/mm] = [mm] \integral{\bruch{dz}{-g-w \cdot{z^{2}}}} [/mm]

Wenn ich diese Gleichung nun beidseitig integriere erhalte ich:

t = [mm] \bruch{-arctan(\bruch{z \cdot{} \wurzel{w}}{\wurzel{g}})}{\wurzel{g} \cdot{} \wurzel{w}} [/mm]

Dies auf z umgeformt ergibt:

z = [mm] \bruch{\wurzel{g}}{\wurzel{w}} \cdot{} tan(t\cdot{}\wurzel{g}\cdot{}\wurzel{w}) [/mm]

Da wir ja oben [mm] \dot{y}=z [/mm] substituiert haben, folgt:

[mm] \bruch{dy}{dt}= \bruch{\wurzel{g}}{\wurzel{w}} \cdot{} tan(t\cdot{}\wurzel{g}\cdot{}\wurzel{w}) [/mm]


dy= [mm] \bruch{\wurzel{g}}{\wurzel{w}} \cdot{} tan(t\cdot{}\wurzel{g}\cdot{}\wurzel{w})\cdot{} [/mm] dt

und somit:

[mm] y_{t}=\bruch{\wurzel{g}\cdot{}\wurzel{w}}{(cos(t\cdot{}\wurzel{g}\cdot{}\wurzel{w})^{2}} [/mm]

Ist dies korrekt oder habe ich nochmals etwas falsch verstanden??

DANKE! Lg

Bezug
                                        
Bezug
DGL Trennung d. Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Sa 26.01.2013
Autor: Richie1401

Hi,

soweit wirklich alles gut gemacht. Sieht natürlich shcon ein bisschen hässlich aus, mit den [mm] \sqrt{k}/\sqrt{m}. [/mm] Also schöner ist es [mm] \sqrt{k/m}. [/mm] Aber ok.

So, und dann ist [mm] \int\tan{x}dx=-\ln{\cos{x}}+c. [/mm]

Du kannst das Integral auch notfalls einfach in Wolfram-Alpha/Mathematica reinhacken. Da hast du dann eine schnelle Kontrolle.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de