www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL aufstellen
DGL aufstellen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL aufstellen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:02 Mo 21.11.2011
Autor: Aucuba

Aufgabe
Zur Zeit t=0 (t in Stunden) wird Salz in ein Reagenzglas mit destilliertem Wasser geschüttet. Ein Teil dieses Salzes löst sich im Laufe der Zeit in der Flüssigkeit auf. Dabei kann die gelöste Salzmenge m(t) einen bestimmten Wert m0, die Sättigungsmenge, nicht überschreiten. Beobachtungen haben gezeigt, dass näherungsweise die Geschwindigkeit , mit der sich m(t) ändert, proportional ist zur Menge des noch lösbaren Salzes.
Bestimmen Sie eine Funktionsgleichung von m(t), wenn der Proportionalitätsfaktor 3 ist.
Welche Art von Wachstum liegt vor?
Wie lange dauert es, bis die gelöste Salzmenge halb so gross wie die Sättignungsmenge ist?

Da ich noch nie eine Aufgabe dieser Art gelöst habe, weiss ich nicht, wie man sie am Besten angeht.

Was aus dem Text klar ersichtlich ist:
gelöste Salzmenge = m(t)
Sättigungsmenge = m0
Propotionalitätsfaktor= 3

Ich denke, dass der Satz: "Beobachtungen haben gezeigt, dass näherungsweise die Geschwindigkeit , mit der sich m(t) ändert, proportional ist zur Menge des noch lösbaren Salzes.", zentral ist für die gesuchte Gleichung.
Aus dem Satz geht hervor (denke ich zumindest), dass m(t)=m0-m(t).
Doch dies ist keine DGL und der Proportionalitätsfaktor kann man so auch nicht einbeziehen.
Kann mir da jemand weiterhelfen?

Vielen Dank!

Gruss
Aucuba

        
Bezug
DGL aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mo 21.11.2011
Autor: leduart

Hallo
da steht NICHT dass m(t)  proportional zu r noch lösbaren menge ist.
richtig ist, dass [mm] m_0-m(t) [/mm] die noch lösbare menge ist. die ist prop, der GESCHWINDIGKEIT  mit der sich m(t) ändert.
Wie kannst du die ausdrücken? dann hast du deine Dgl.
Gruss leduart

Bezug
                
Bezug
DGL aufstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Mo 21.11.2011
Autor: Aucuba


> Hallo
>  da steht NICHT dass m(t)  proportional zu r noch lösbaren
> menge ist.
>  richtig ist, dass [mm]m_0-m(t)[/mm] die noch lösbare menge ist.
> die ist prop, der GESCHWINDIGKEIT  mit der sich m(t)
> ändert.
>  Wie kannst du die ausdrücken? dann hast du deine Dgl.
>  Gruss leduart

  
Hallo Leduart
Also normalerweise ist die Geschwindigkeit durch den zurückgelegten Weg dividiert mit der dazu benötigten Zeit gegeben [mm] v=\bruch{ds}{dt}. [/mm] Der zurückgelegte Weg, ist doch die Menge des Salzes, welche schon gelöst ist? Ist demnach v= [mm] \bruch{m(t)}{t}? [/mm]

Gruss
Aucuba

Bezug
                        
Bezug
DGL aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:06 Mo 21.11.2011
Autor: leduart

Hallo
wenn dus analog zur "Geschwindigkeit der Wegänderung gemacht hättest wär es richtig, also [mm] \bruch{dm(t)}{dt}=m'(t) [/mm] ist deine "Geschwindigkeit".
damit hast du deine Dgl hoffentlich. gie homogene lösen, für die inhomogene den ansatz m)t)=A m'=0 daraus A und zur homogenen Lösg. addieren
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de