www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL eindeutig lösbar?
DGL eindeutig lösbar? < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL eindeutig lösbar?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:32 Di 22.02.2011
Autor: ChopSuey

Aufgabe
Untersuchen Sie die Dgl $ y' = [mm] 6x\sqrt[3]{y^2} [/mm] $ auf eindeutige Lösbarkeit.

Moin!

In Vorbereitung auf die Klausuren war das eine Übungsaufgabe, zu der sich mir ein paar Fragen stellten.

Die rechte Seite der Dgl ist stetig, also ist sie lokal lösbar.

Nun wollte ich das Ganze noch auf Lipschitz-Stetigkeit bzgl $ y $ untersuchen.

Es ist $ y' = f(x,y) = [mm] 6x*\sqrt[3]{y^2} [/mm] $ und $ [mm] \dfrac{\partial f(x,y)}{\partial y} [/mm] = [mm] 4xy^{-\frac{1}{3}} [/mm] $

$ f $ ist also bzgl $ y $ in allen Punkten $ [mm] (x_0, y_0) [/mm] $ mit $ [mm] y_0 \not= [/mm] 0 $ stetig partiell differenzierbar. Daraus folgt, dass $ f $ lokal einer Lipschitz-Bedingung genügt.

Nach Picard-Lindelöff existiert also eine eindeutige Lösung der DGL.

Soweit richtig?

Ich war nun auf der Suche nach einer geeigneten Lipschitz-Konstante und war bisher nicht erfolgreich.

Ich möchte zeigen, dass [mm] $\dfrac{\partial f(x,y)}{\partial y} [/mm] = [mm] 4xy^{-\frac{1}{3}}$ [/mm] durch ein $ L [mm] \in \IR [/mm] $ beschränkt ist, so dass ich dieses $ L $ mit Hilfe des Mittelwertsatzes als Lipschitz-konstante wählen kann.

Doch wie geh ich dabei vor? Wird das denn überhaupt klappen?

Freue mich über jede Hilfe!

Grüße
ChopSuey


        
Bezug
DGL eindeutig lösbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Mi 23.02.2011
Autor: fred97

1. $y  [mm] \equiv [/mm] 0$  ist eine Lösung der DGL.


2. Für jedes $c [mm] \in \IR$ [/mm] ist $y(x):= [mm] (2x+c)^3$ [/mm]  eine Lösung der DGL  (Trennung der Variablen)

3. Viel weiter weg von "eindeutige Lösbarkeit" kann eine DGL kaum sein !

4. Mit Picard-Lindelöf brauchst Du bei obiger Aufgabe nicht kommen, denn Du hast kein Anfangswertproblem gegeben.


FRED

Bezug
                
Bezug
DGL eindeutig lösbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:50 Mi 23.02.2011
Autor: ChopSuey

Hallo Fred,

prima, vielen Dank für Deine Hilfe!

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de