www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL lösen
DGL lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL lösen: ansatz
Status: (Frage) beantwortet Status 
Datum: 20:17 Do 09.06.2011
Autor: Elfe

Aufgabe
In einem Schaltkreis befinden sich eine Spannungsquelle mit der Spannung U(t), eine Spule mit der Selbstinduktion L=2 [Henry], ein Kondensator mit der Kapazität C =0,5 [Farad]=0,5 [AmpereSec/Volt] und ein ohmscher Widerstand von R [Ohm]. Der Kondensator sei zum Zeitpunkt t=0 ladungsfrei. Dann gilt nach dem 2. Kirchhoffschen Gesetz für den Verlauf der Stromstärke i

[mm] Ri(t)+Li'(t)+\bruch{1}{C}\integral_{0}^{t}{i(\tau) d\tau} [/mm] = U(t)

Für t<0 sei U(t)=0 und i(t)=0, für [mm] t\ge0 [/mm] sei U(t) konstant gleich [mm] u_{0}=6 [/mm] Volt.
Man leite aus der obigen Gleichung eine Differentialgleichung für i(t) her und beschreibe das AWP für i(t), [mm] t\ge0. [/mm] Man berechne die Lösung dieses AWP für
a) R=2
b) R=4
c) R=6

Hallo,
ich hätte eine Frage zur DGL, weil ich mir da nicht ganz sicher bin.

Und zwar hatten wir in der Vorlesung eine ziemlich ähnliche Beispielaufgabe und deshalb habe ich vorerst das DGL aus ihr übernommen... jetzt hätte ich dazu aber eine Frage... erstmal das DGL:

[mm] i''+\bruch{R}{L}*i'+\bruch{1}{C*L}*i=\bruch{u_{0}}{L} [/mm]

mit i(t)=0 und [mm] i'(t)=\bruch{u_{0}}{L} [/mm] für t [mm] \ge [/mm] 0

Aber rechts von der Gleichung bin ich mir nicht sicher, ob da dieser Bruch stehen muss oder eben nicht 0 einfach nur. Und das beeinflusst ja letztlich meine gesamte weitere Rechnung. Ich hatte mir gedacht da müsste [mm] u_{0} [/mm] stehen, weil in der Ausgangsgleichung U(t) stand, also ein großes U und das ja abgeleitet wird für das DGL. Aber da bin ich mir eben nicht sicher. Und entweder da steht rechts der Gleichung nun [mm] \bruch{6}{2}=3 [/mm] oder eben 0.

Kann mir da jemand weiterhelfen, was da nun hinkäme?

danke schonmal!

elfe

        
Bezug
DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Do 09.06.2011
Autor: Al-Chwarizmi


> In einem Schaltkreis befinden sich eine Spannungsquelle mit
> der Spannung U(t), eine Spule mit der Selbstinduktion L=2
> [Henry], ein Kondensator mit der Kapazität C =0,5
> [Farad]=0,5 [AmpereSec/Volt] und ein ohmscher Widerstand
> von R [Ohm]. Der Kondensator sei zum Zeitpunkt t=0
> ladungsfrei. Dann gilt nach dem 2. Kirchhoffschen Gesetz
> für den Verlauf der Stromstärke i
>  
> [mm]Ri(t)+Li'(t)+\bruch{1}{C}\integral_{0}^{t}{i(\tau) d\tau}\ =\ U(t)[/mm]
>  
> Für t<0 sei U(t)=0 und i(t)=0, für [mm]t\ge0[/mm] sei U(t)
> konstant gleich [mm]u_{0}=6[/mm] Volt.
> Man leite aus der obigen Gleichung eine
> Differentialgleichung für i(t) her und beschreibe das AWP
> für i(t), [mm]t\ge0.[/mm] Man berechne die Lösung dieses AWP für
> a) R=2
>  b) R=4
>  c) R=6
>  Hallo,
> ich hätte eine Frage zur DGL, weil ich mir da nicht ganz
> sicher bin.
>
> Und zwar hatten wir in der Vorlesung eine ziemlich
> ähnliche Beispielaufgabe und deshalb habe ich vorerst das
> DGL aus ihr übernommen... jetzt hätte ich dazu aber eine
> Frage... erstmal das DGL:
>  
> [mm]i''+\bruch{R}{L}*i'+\bruch{1}{C*L}*i=\bruch{u_{0}}{L}[/mm]
>  
> mit i(t)=0 und [mm]i'(t)=\bruch{u_{0}}{L}[/mm] für t [mm]\ge[/mm] 0
>  
> Aber rechts von der Gleichung bin ich mir nicht sicher, ob
> da dieser Bruch stehen muss oder eben nicht 0 einfach nur.

Rechts muss die Ableitung der Konstanten [mm] \frac{U(t)}{L} [/mm]  (für t>0)
stehen, also einfach Null !
Der Sprung der Spannung von U=0 auf U=6 Volt an der
Stelle t=0 hat keine Bedeutung für die DGL, die wir ja
nur für [mm] t\ge0 [/mm] brauchen.

> Und das beeinflusst ja letztlich meine gesamte weitere
> Rechnung. Ich hatte mir gedacht da müsste [mm]u_{0}[/mm] stehen,
> weil in der Ausgangsgleichung U(t) stand, also ein großes
> U und das ja abgeleitet wird für das DGL. Aber da bin ich
> mir eben nicht sicher. Und entweder da steht rechts der
> Gleichung nun [mm]\bruch{6}{2}=3[/mm] oder eben 0.
>
> Kann mir da jemand weiterhelfen, was da nun hinkäme?
>
> danke schonmal!
>
> elfe

LG   Al-Chw.  


Bezug
        
Bezug
DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Do 09.06.2011
Autor: leduart

Hallo
vielleicht hast du dich nur verschrieben, aber es ist nicht i(t)=0 sondern nur i(0)=0; ebenso [mm] i'(0)=u_0/L [/mm]
das sind die Anfangsbedingungen.
zum Rest hat ja Alch. schon das nötige gesagt.
Gruss leduart


Bezug
                
Bezug
DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Do 09.06.2011
Autor: Elfe

ja dankeschön, das meinte ich! :) Vielen dank nochmal! Ich hoffe ich habs jetzt hinbekommen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de