www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL lösen
DGL lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 02.02.2012
Autor: eddiebingel

Aufgabe
Lösen Sie die folgende DGL mit den gegebenen Anfangsbedingungen

a) [mm] t^{2} [/mm] + [mm] x^{2} [/mm] = 2txx' mit x(1) = [mm] x_{0} [/mm]

Hallo zusammen,
habe versucht diese DGL zu lösen habe es mit Trennung der Variablen versucht musste aber feststellen dass es nicht geklappt

Welcher Ansatz ist hier zu wählen um zu der Lösung zu kommen?

lg eddie

        
Bezug
DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Do 02.02.2012
Autor: fred97


> Lösen Sie die folgende DGL mit den gegebenen
> Anfangsbedingungen
>  
> a) [mm]t^{2}[/mm] + [mm]x^{2}[/mm] = 2txx' mit x(1) = [mm]x_{0}[/mm]
>  Hallo zusammen,
>  habe versucht diese DGL zu lösen habe es mit Trennung der
> Variablen versucht musste aber feststellen dass es nicht
> geklappt
>
> Welcher Ansatz ist hier zu wählen um zu der Lösung zu
> kommen?

Es ist [mm] $(x(t)^2)'=2x(t)*x'(t)$ [/mm]

Damit lautet Deine DGL:

             [mm] $t^2+x^2=2t(x^2)'$ [/mm]

Edit: sie lautet natürlich

              [mm] $t^2+x^2=t(x^2)'$ [/mm]

Setze also [mm] z(t):=x(t)^2 [/mm]

Dann bekommst Du die DGL



          

             [mm] $t^2+z=2tz'$ [/mm]

Edit: man bekommt:

              [mm] $t^2+z=tz'$ [/mm]

FRED

>  
> lg eddie


Bezug
                
Bezug
DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Do 02.02.2012
Autor: schachuzipus

Hossa Fred,

da ist dir ne 2 zuviel reingerutscht ...

Und das 2mal ;-)

Da, wo's rot ist ...


> > Lösen Sie die folgende DGL mit den gegebenen
> > Anfangsbedingungen
>  >  
> > a) [mm]t^{2}[/mm] + [mm]x^{2}[/mm] = 2txx' mit x(1) = [mm]x_{0}[/mm]
>  >  Hallo zusammen,
>  >  habe versucht diese DGL zu lösen habe es mit Trennung
> der
> > Variablen versucht musste aber feststellen dass es nicht
> > geklappt
> >
> > Welcher Ansatz ist hier zu wählen um zu der Lösung zu
> > kommen?
>  
> Es ist [mm](x(t)^2)'=2x(t)*x'(t)[/mm]
>  
> Damit lautet Deine DGL:
>  
> [mm]t^2+x^2=\red{2}t(x^2)'[/mm]
>  
> Setze also [mm]z(t):=x(t)^2[/mm]
>  
> Dann bekommst Du die DGL
>  
> [mm]t^2+z=\red{2}tz'[/mm]
>  
> FRED
>  >  
> > lg eddie
>  

LG

schachuzipus


Bezug
                        
Bezug
DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Do 02.02.2012
Autor: fred97


> Hossa Fred,
>  
> da ist dir ne 2 zuviel reingerutscht ...
>  
> Und das 2mal ;-)
>  
> Da, wo's rot ist ...

Servus schachuzipus ,

Du hast recht. Danke fürs Aufpassen. Werd es editieren

Gruß FRED

>  
>
> > > Lösen Sie die folgende DGL mit den gegebenen
> > > Anfangsbedingungen
>  >  >  
> > > a) [mm]t^{2}[/mm] + [mm]x^{2}[/mm] = 2txx' mit x(1) = [mm]x_{0}[/mm]
>  >  >  Hallo zusammen,
>  >  >  habe versucht diese DGL zu lösen habe es mit
> Trennung
> > der
> > > Variablen versucht musste aber feststellen dass es nicht
> > > geklappt
> > >
> > > Welcher Ansatz ist hier zu wählen um zu der Lösung zu
> > > kommen?
>  >  
> > Es ist [mm](x(t)^2)'=2x(t)*x'(t)[/mm]
>  >  
> > Damit lautet Deine DGL:
>  >  
> > [mm]t^2+x^2=\red{2}t(x^2)'[/mm]
>  >  
> > Setze also [mm]z(t):=x(t)^2[/mm]
>  >  
> > Dann bekommst Du die DGL
>  >  
> > [mm]t^2+z=\red{2}tz'[/mm]
>  >  
> > FRED
>  >  >  
> > > lg eddie
> >  

>
> LG
>  
> schachuzipus
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de