www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL mit JNF
DGL mit JNF < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit JNF: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:47 Mi 26.11.2014
Autor: Lisa641

Aufgabe
Bestimme die Lösungsmenge des Differentialgleichungssytems
[mm] u_{1}^{'}= 2u_{1}-u_{2}^{'} [/mm] + [mm] u_{2} [/mm]

[mm] u_{2}^{''} [/mm] = [mm] -u_{1} [/mm] + [mm] u_{2}^{'} [/mm]


Hey zusammen, ich sitze gerade an dieser Aufgabe und komme aber leider nicht zum Schluss bzw. auf die Lösungsmenge.
Da ich eine DGL der 2. Ordnung besitze habe ich diese zuerst in eine DGL der 1. Ordnung "ungeformt" indem ich [mm] u_{3}=u_{2}^{'} [/mm] gesetzt habe. Dann habe ich nämlich

[mm] u_{1}^{'}= 2u_{1}-u_{3} [/mm] + [mm] u_{2} [/mm]
[mm] u_{2}^{'}= u_{3} [/mm]
[mm] u_{3}^{'} [/mm] = [mm] -u_{1} [/mm] + [mm] u_{3} [/mm]  mit der Matrix

[mm] A=\pmat{ 2 & 1 &-1 \\ 0 & 0 & 1 \\ -1 & 0 & 1 }. [/mm]

Anschließend habe ich das Char. Polynom und das MiPO berechnet. In dem Fall sind beide gleich also [mm] (x-1)(x-(1+\wurzel{2})(x-(1-\wurzel{2}). [/mm]

Im nächsten Schritt habe ich die Kerne von den jeweiligen EW bestimmt (also EV):

EW=1 : [mm] <\vektor{0 \\ 1 \\ 1}> [/mm]
EW= [mm] 1-\wurzel{2} [/mm] : [mm] <\vektor{\wurzel{2} \\ -1-\wurzel{2}\\ 1}> [/mm]
EW= [mm] 1+\wurzel{2} [/mm] : [mm] <\vektor{-\wurzel{2} \\ -1+\wurzel{2}\\ 1}> [/mm]


Da alle Kerne 1-dim sind (sie kommen alle auch  nur einfach vor) lautet die Transformationsmatrix

[mm] T=\pmat{ 0 & \wurzel{2} &-\wurzel{2} \\ 1 & -1-\wurzel{2} & -1+\wurzel{2} \\ 1 & 1 & 1 }. [/mm]

[mm] \Rightarrow T=(t_{1},t_{2},t_{3}) [/mm] erfüllt [mm] T^{-1}AT [/mm] = [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1-\wurzel{2} & 0 \\ 0 & 0 & 1+\wurzel{2} }. [/mm]



Ab hier weiß ich leider nicht wie ich weitermachen soll. Wie komme ich von der JNF auf meine Lösungsmenge mit e hoch "irgendwas" ?
Es wäre lieb, wenn ihr mir helfen könnten, ich brauche die Punkte der Aufgabe nämlich für die Klausurzulassung.

Vielen Dank schonmal :)

        
Bezug
DGL mit JNF: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Mi 26.11.2014
Autor: andyv

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo,

wozu brauchst du denn die JNF bzw. wozu willst du die Exp-Matrix berechnen?

Ein Fundamentalsystem von
$ u_{1}^{'}= 2u_{1}-u_{3} $ + $ u_{2} $
$ u_{2}^{'}= u_{3} $
$ u_{3}^{'} $ = $ -u_{1} $ + $ u_{3} $

ist $\{t \mapsto v_i\cdot e^{\lambda_i t}|i\in\{1,2,3}\}\}$, $v_i$ EV von A zum EW $\lambda_i$.

Liebe Grüße

Bezug
                
Bezug
DGL mit JNF: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:44 Mi 26.11.2014
Autor: Lisa641

Wir machen dieses Thema gerade in LA II. Die Proffesorin hat es mit JNF im Skript steht. Nur habe ich es leider nicht verstanden....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de