www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Laplace lösen
DGL mit Laplace lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Laplace lösen: Kontrolle + Fragen
Status: (Frage) beantwortet Status 
Datum: 11:23 Mi 23.01.2008
Autor: Schmidtl

Aufgabe
Lösen Sie mit DGL-Methoden und mittels Laplace-Transformation y’’ + 2y’ + y = 0 mit y(0) = 0 ; y’(0) = 1.

Hallo,

o.g. Aufgabe habe ich gelöst, nur habe ich noch paar Unsicherheiten und bitte um kurze Kontrolle.


Meine Fragen dazu:

1) Passt dies mit der Nullstellenbestimmung un der Partialbruchzerlegung? Ist ja m.E. eine doppelte Nullstelle.
2) In dem Term mit den Fragezeichen weiß ich leider nicht, ob es korrekt ist. Glaube fast kaum.
3) Passt die Rechnung ansonsten so?
4) Wenn ich das gleiche mit der Fouriertransformation machen will, fange ich genauso an und ändere die Regeln von Laplace nur in Fourier?

Lösung wie folgt:

[mm] a_{2} [/mm] = 1
[mm] a_{1} [/mm] = 2
[mm] a_{0} [/mm] = 1

Dann daraus:

A(s) = [mm] s^{2} [/mm] + 2 s + 1 = (s+1)(s+1)

P(s) = [mm] y_{0} [/mm] + [mm] 2+y_{0} [/mm] + [mm] y_{0}' [/mm]

Q(s) = [mm] \bruch{1}{s^{2} + 2s + 1} [/mm]

D(s) = [mm] \bruch{y_{0} s + 2y_{0} + y_{0}'}{s^{2} + 2s + 1} [/mm] = [mm] y_{0} [/mm] * [mm] \bruch{s+2}{s^{2} + 2s + 1} [/mm] + [mm] y_{0}' [/mm] * [mm] \bruch{1}{s^{2} +2s + 1} [/mm]

Jetzt die Nullstellen bestimmt und Partialbruchzerlegung:

[mm] \lambda_{1} [/mm] = -1 [mm] \Rightarrow \bruch{U}{(s+1)^{2}} [/mm] = Q(s) [mm] \Rightarrow [/mm] U = 1

Jetzt habe ich mir kurz Gedanken zur Laplacetransformierten gemacht und nehme dazu:

[mm] \alpha[t [/mm] * [mm] e^{c*t}] [/mm] = [mm] \bruch{1}{(s+1)^{2}} [/mm] mit c = 1 [mm] \Rightarrow \alpha[t [/mm] * [mm] e^{-1*t}] [/mm] = [mm] \bruch{1}{(s+1)^{2}} [/mm]

q(t) = t * [mm] e^{-1*t} [/mm]

Und jetzt will ich d(t) bestimmen und forme dazu D(s) um. Dabei habe ich aber ein paar Probleme.

D(s) = [mm] y_{0} [/mm] * [mm] (\bruch{s+2}{(s+1)^{2}}) [/mm] + [mm] y_{0}' [/mm] * [mm] (\bruch{1}{(s+1)^{2}}) [/mm]

d(t) = ? [mm] y_{0} [/mm] * t * [mm] e^{-1*t} [/mm] ? + [mm] y_{0}' [/mm] * t * [mm] e^{-1*t} [/mm]

Jetzt habe ich noch die Faltung genutzt, um y(t) zu ermitteln. Darum soll es aber erstmal nicht gehen, da ich erstmal wissen möchte, ob ich bis hier her fehlerfrei bin.

Vielen Dank!!!


        
Bezug
DGL mit Laplace lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Mi 23.01.2008
Autor: steffenhst

Hallo,

naja, wenn du d(t) einsetzt, dann löst es die Gleichung, d.h. deine Rechnung kann ja nicht falsch sein. Wolltest du das wissen?

Grüße, Steffen

Bezug
                
Bezug
DGL mit Laplace lösen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:02 Mi 23.01.2008
Autor: Schmidtl

Hi,

naja, bis zum Endergebnis bin ich noch nicht gekommen. Ich wollte nur erstmal meine 3 gestellen Fragen geklärt haben, weil ich mir da mehr als unsicher war und nicht ganz an die Korrektheit glaube - eh ich jetzt mit falschen Werten weiter rechne.

Meine Fragen dazu waren:

1) Passt dies mit der Nullstellenbestimmung un der Partialbruchzerlegung? Ist ja m.E. eine doppelte Nullstelle.
2) In dem Term mit den Fragezeichen weiß ich leider nicht, ob es korrekt ist. Glaube fast kaum.
3) Passt die Rechnung ansonsten so?
4) Wenn ich das gleiche mit der Fouriertransformation machen will, fange ich genauso an und ändere die Regeln von Laplace nur in Fourier?

Vielen Dank.

Bezug
                        
Bezug
DGL mit Laplace lösen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 So 27.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de