www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL nter Ordnung
DGL nter Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL nter Ordnung: Differentialoperator
Status: (Frage) beantwortet Status 
Datum: 22:41 Do 21.01.2010
Autor: tynia

Hallo. Ich habe hier eine Formel zu Differentialoperatoren, die der Darstellung von homogenen linearen DGL nter Ordnung dienen.
Ich habe hier eine Formel und verstehe da einen Teil nicht. Wäre schön, wenn mir einer helfen kann


Der Differentialoperator ordnet ja jeder Funktion u [mm] \in [/mm] C (I) ihre Ableitung zu, kurz: Du:=u' für jedes u [mm] \in C^{\infty}(I). [/mm]

Was bedeutet [mm] C^{\infty}(I) [/mm] genaU? Ist das die Menge aller stetigen Funktionen? Ich habe nämlich gerade in einem Buch gelesen, dass es die Menge aller komplexwertigen Funktionen ist, die auf dem Intervall I definiert und dort beliebig oft differenzierbar sind.

ich hätte jetzt eher gedacht, dass damit alle Funktionen gemeint sind.

Danke schonmal.

LG

        
Bezug
DGL nter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Do 21.01.2010
Autor: rainerS

Hallo!

> Hallo. Ich habe hier eine Formel zu Differentialoperatoren,
> die der Darstellung von homogenen linearen DGL nter Ordnung
> dienen.
>  Ich habe hier eine Formel und verstehe da einen Teil
> nicht. Wäre schön, wenn mir einer helfen kann
>  
>
> Der Differentialoperator ordnet ja jeder Funktion u [mm]\in[/mm] C
> (I) ihre Ableitung zu, kurz: Du:=u' für jedes u [mm]\in C^{\infty}(I).[/mm]
>  
> Was bedeutet [mm]C^{\infty}(I)[/mm] genaU? Ist das die Menge aller
> stetigen Funktionen? Ich habe nämlich gerade in einem Buch
> gelesen, dass es die Menge aller komplexwertigen Funktionen
> ist, die auf dem Intervall I definiert und dort beliebig
> oft differenzierbar sind.

Normalerweise bedeutet [mm] $C^n(I)$ [/mm] die Menge der auf I n-mal stetig diff'baren Funktionen, und [mm] $C^\infty(I)$ [/mm] die Menge der auf I unendlich oft stetig diff'baren Funktionen. Meinem Verständnis nach handelt es sich dabei immer um reellwertige Funktionen, aber das mag auch anders definiert sein.

Viele Grüße
   Rainer

Bezug
                
Bezug
DGL nter Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Fr 22.01.2010
Autor: tynia

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de