www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DG 2. Ordnung
DG 2. Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DG 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:02 Fr 22.01.2010
Autor: andi7987

Aufgabe
Beispiel:

y'' + 3y' + 2y = [mm] 4*e^{2*x} [/mm]

y(0) = - 3
y'(0) = 5

So ich habe jetzt folgendes gemacht:

1. Schritt:

[mm] \lambda^{2} [/mm] - [mm] 3*\lambda [/mm] + 2 = 0

[mm] \lambda [/mm] 1;2 = [mm] \bruch{+3 +- 1}{2} [/mm]

[mm] \lambda1 [/mm] = 2
[mm] \lambda2 [/mm] = 1

Lösung: yh = [mm] c1*e^{x} [/mm] + c2 [mm] *e^{2x} [/mm]

2. Schritt:
[mm] 4*e^{2x} [/mm] = 0

yp = [mm] A*x*e^{2x} [/mm]
y'p = (2Ax + A) * [mm] e^{2x} [/mm]
y''p = 4A * (x + 1) * [mm] e^{2x} [/mm]

= [mm] 4Ae^{2x} [/mm] * (x + 1) - 3 * [mm] e^{2x} [/mm] * (2 Ax + A) + 2 * [mm] (Axe^{2x} [/mm] = 4 [mm] e^{2x} [/mm]

Jetzt hab ich es noch ausmultipliziert:

[mm] 4Axe^{2x} [/mm] + [mm] 4Ae^{2x} [/mm] - [mm] 6Axe^{2x} [/mm] - [mm] 3Ae^{2x} [/mm] + [mm] 2Axe^{2x} [/mm] = [mm] 4e^{2x} [/mm]

Dann kann ich die [mm] e^{2x} [/mm] kürzen:

4Ax + 4A - 6Ax - 3A + 2Ax = 4

Dann kürzen sich schon mal alle mit x raus.

Übrig bleibt:

1A = 4

Lösung: A = 4

Das dann oben eingesetzt:

4 [mm] e^{2x} [/mm]


3. Schritt: Zusammenführen von y = yh + yp

y = c1 * [mm] e^{x} [/mm] + [mm] e^{2x} [/mm] + 4 [mm] e^{2x} [/mm]

4. Schritt: Die Randbedingungen ansehen bezüglich Errechnung von c1 und c2!

1. Bedingung: y(0) = -3

-3 = c1 + c2

Lösung: c1 = -3 - c2

2. Bedingung: y'(0) = 5

y'h = 2 * (c2 + 4) * [mm] e^{2x} [/mm] + c1 * [mm] e^{x} [/mm]

5 = 2c2 + 8 + c1

5 = 2c2 + 8 + (-3 - c2)

Lösung: c2 = -5
Lösung: c1 = 2


Endlösung: y = 2 [mm] e^{x} [/mm] - [mm] 5e^{2x} [/mm] + 4 [mm] e^{2x} [/mm]

Ist das richtig?

        
Bezug
DG 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Fr 22.01.2010
Autor: Herby

Hi,

> Beispiel:
>  
> y'' + 3y' + 2y = [mm]4*e^{2*x}[/mm]
>  
> y(0) = - 3
>  y'(0) = 5
>  So ich habe jetzt folgendes gemacht:
>  
> 1. Schritt:
>  
> [mm]\lambda^{2}[/mm] [mm] \red{-}[/mm]  [mm]3*\lambda[/mm] + 2 = 0


oben in der DGL steht ein + und hier ein -

Was ist richtig?


LG
Herby

Bezug
        
Bezug
DG 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Fr 22.01.2010
Autor: Herby

Hi,

> Beispiel:
>  
> y'' + 3y' + 2y = [mm]4*e^{2*x}[/mm]
>  
> y(0) = - 3
>  y'(0) = 5
>  So ich habe jetzt folgendes gemacht:
>  
> 1. Schritt:
>  
> [mm]\lambda^{2}[/mm] - [mm]3*\lambda[/mm] + 2 = 0
>  
> [mm]\lambda[/mm] 1;2 = [mm]\bruch{+3 +- 1}{2}[/mm]
>  
> [mm]\lambda1[/mm] = 2
>  [mm]\lambda2[/mm] = 1
>  
> Lösung: yh = [mm]c1*e^{x}[/mm] + c2 [mm]*e^{2x}[/mm]
>  
> 2. Schritt:
>   [mm]4*e^{2x}[/mm] = 0
>  
> yp = [mm]A*x*e^{2x}[/mm]
>  y'p = (2Ax + A) * [mm]e^{2x}[/mm]
>  y''p = 4A * (x + 1) * [mm]e^{2x}[/mm]
>  
> = [mm]4Ae^{2x}[/mm] * (x + 1) - 3 * [mm]e^{2x}[/mm] * (2 Ax + A) + 2 *
> [mm](Axe^{2x}[/mm] = 4 [mm]e^{2x}[/mm]
>  
> Jetzt hab ich es noch ausmultipliziert:
>  
> [mm]4Axe^{2x}[/mm] + [mm]4Ae^{2x}[/mm] - [mm]6Axe^{2x}[/mm] - [mm]3Ae^{2x}[/mm] + [mm]2Axe^{2x}[/mm] =
> [mm]4e^{2x}[/mm]
>  
> Dann kann ich die [mm]e^{2x}[/mm] kürzen:
>  
> 4Ax + 4A - 6Ax - 3A + 2Ax = 4
>  
> Dann kürzen sich schon mal alle mit x raus.
>  
> Übrig bleibt:
>  
> 1A = 4
>  
> Lösung: A = 4

[daumenhoch]  das stimmt bis hier

  

> Das dann oben eingesetzt:
>  
> 4 [mm]e^{2x}[/mm]
>  
>
> 3. Schritt: Zusammenführen von y = yh + yp
>  
> y = c1 * [mm]e^{x}[/mm] + [mm]e^{2x}[/mm] + 4 [mm]e^{2x}[/mm]
>  
> 4. Schritt: Die Randbedingungen ansehen bezüglich
> Errechnung von c1 und c2!
>  
> 1. Bedingung: y(0) = -3
>  
> -3 = c1 + c2

nein,  [mm] -3=C_1*e^{1*0}+C_2*e^{2*0}+\red{4}*e^{2*0}=C_1+C_2+\red{4} [/mm]


Damit stimmt der Rest auch nicht, aber das Prinzip ist richtig.


Lg
Herby


PS: bitte keine "Endlösungen" hier im Forum anbieten, gelle [grins]

Bezug
                
Bezug
DG 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 Fr 22.01.2010
Autor: andi7987

Sorry, in der Angabe ist minus!

y'' - 3y' + 2y = 0

Endlösung war es ja doch wieder keine! :-( :-)

So jetzt nochmals zum Schluß: :-)

y(0) = -3

y = c1 * [mm] e^{x} [/mm] + c2 * [mm] e^{2x} [/mm] + [mm] 4e^{2x} [/mm]

-3 = c1 * [mm] e^{0} [/mm] + c2 * [mm] e^{2*0} [/mm] + 4 * [mm] e^{2*0} [/mm]

-3 = c1 + c2 + 4

-7 = c1 + c2

c1 = -c2 - 7


Dann 2 Ableitung:

y'h = 2 * (c2 + 4) * [mm] e^{2x} [/mm] + c1 * [mm] e^{x} [/mm]

y'(0) = 5

5 = 2 [mm] e^{2*0} [/mm] c2 + 8 [mm] e^{2*0} [/mm] + c1 * [mm] e^{0} [/mm]

5 = 2 c2 + 8 + c1

5 = 2c2 + 8 + (-c2 - 7)

5 = 2 c2 + 8 - c2 - 7

5 = c2 + 1

c2 = 4


c1 = -c2 - 7

c1 = -4 - 7

c1 = -11

Kann des jetzt passen, oder habe ich schon wieder wo einen Stiefel zusammengerechnet?

Bezug
                        
Bezug
DG 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:10 Fr 22.01.2010
Autor: Herby

Hi,

> Sorry, in der Angabe ist minus!
>  
> y'' - 3y' + 2y = 0
>  
> Endlösung war es ja doch wieder keine! :-( :-)
>  
> So jetzt nochmals zum Schluß: :-)
>  
> y(0) = -3
>  
> y = c1 * [mm]e^{x}[/mm] + c2 * [mm]e^{2x}[/mm] + [mm]4e^{2x}[/mm]
>  
> -3 = c1 * [mm]e^{0}[/mm] + c2 * [mm]e^{2*0}[/mm] + 4 * [mm]e^{2*0}[/mm]
>  
> -3 = c1 + c2 + 4
>
> -7 = c1 + c2
>  
> c1 = -c2 - 7
>  
>
> Dann 2 Ableitung:
>  
> y'h = 2 * (c2 + 4) * [mm]e^{2x}[/mm] + c1 * [mm]e^{x}[/mm]
>  
> y'(0) = 5
>  
> 5 = 2 [mm]e^{2*0}[/mm] c2 + 8 [mm]e^{2*0}[/mm] + c1 * [mm]e^{0}[/mm]
>  
> 5 = 2 c2 + 8 + c1
>  
> 5 = 2c2 + 8 + (-c2 - 7)
>  
> 5 = 2 c2 + 8 - c2 - 7
>  
> 5 = c2 + 1
>  
> c2 = 4
>  
>
> c1 = -c2 - 7
>  
> c1 = -4 - 7
>  
> c1 = -11
>  
> Kann des jetzt passen, oder habe ich schon wieder wo einen
> Stiefel zusammengerechnet?  

[daumenhoch]  jetzt passt es


Lg
Herby


Bezug
                                
Bezug
DG 2. Ordnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:12 Fr 22.01.2010
Autor: andi7987

Danke, danke! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de