www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - DIfferzialrechnung
DIfferzialrechnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DIfferzialrechnung: Funktion differnzierbar?
Status: (Frage) überfällig Status 
Datum: 18:17 Di 30.05.2006
Autor: littlesunshine88

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe 1
Zeichnen sie den Graphen der Funktion f und untersuchen Sie f auf Differenzierbarkeit an der Stelle a
c) f(x)= { (x-2)² für 2<x<3,5
                3x-9,25 für 3,5<_ x                ; a=3,5

Aufgabe 2
Aus KLausur:
An welcher Stelle sind die Funtionen f und g nicht differenzierbar?

f(x)= { x² für x_<1
            2-x für x> -1
g(x)={ x2 für x<_1
            x  für x> 1

Die 1. Aufgabe hat die Lösung:
lim          f(x)=2,25 ^  lim f(x)=1 -> f ist an der Stelle x=3,5 nicht steig,
x->3,5                        x->3,5
x<3,5                         x>3,5

Wie wählen die denn den limes? Muss die Funktion gegen 3,5 laufen??
Was für Zahlen setzen die da ein? Warum 2 Rechnungen?...Woran sehe ich das die Funktion hier nicht Stetig ist?

Die 2. Aufgabe

Hier würde ich gerne wissen wie ich auf das Ergebnis komme und evtl. warum.

Dankeschön!!Schreib morgen meine KLausur. Und dann hab ich alle hinter mir
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt. Jedoch zum zweiten Mal heir rein getan, da ich nichts mehr ändern konnte. Ich brauche die Lösung heute und nicht erst in 5Tagen. Dennoch interressiert es mich ja dann noch!

        
Bezug
DIfferzialrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Di 30.05.2006
Autor: Martin243

Hallo,

zu Aufgabe 1:
Wir haben es hier mit einer Funktion zu tun, die stückweise definiert ist, d.h. sie besteht aus zwei "Teilen", die irgendwo aufeinandertreffen. Dieser Punkt ist häufig problematisch, weil die Teilfunktionen dort unter verschiedensten Winkeln aufeinandertreffen können.

Wenn sich die Funktionen gar nicht treffen, weil zwischen den beiden Funktionsästen eine Lücke klafft, dann ist die gesamte Funktion unstetig in diesem Punkt (Tipp: wenn sich der Graph mit einem Bleistiftstrich ohne abzusetzen zeichnen lässt, ist die Funktion stetig)

Wenn die Funktion stetig ist, dann kann man auch fragen (und nur dann!), ob sie differenzierbar ist, also, ob die beiden Funktionsäste fließend ineinander übergehen.

In deiner Aufgabe ist also die Stelle x=3,5 interessant. Man lässt nun x einmal von links und einmal von rechts nach 3,5 streben, so dass man sich einmal über den linken Ast und einmal über den rechten Ast auf diese Stelle zubewegt.
Man stellt fest, dass sich der linke und der rechte Ast nicht treffen (denn sonst hätten sie denselben Grenzwert für [mm] x\to [/mm] 3,5).
Die Fuktion ist somit nicht stetig. Wenn sie nicht stetig ist, dann kann sie schon gar nicht differenzierbar sein, weil Stetigkeit eben eine notwendige Bedingung für Differenzierbarkeit ist.


So viel erstmal zu Aufgabe 1.
Vielleicht kann jemand zu 2. etwas schreiben.

Gruß
Martin

Bezug
        
Bezug
DIfferzialrechnung: 2.Aufgabe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 Di 30.05.2006
Autor: chrisno


> An welcher Stelle sind die Funtionen f und g nicht
> differenzierbar?
>
> f(x)=  x² für x_<1
>          2-x für x> -1

> g(x)=x2 für x<_1
>          x  für x> 1

> Die 2. Aufgabe
>
> Hier würde ich gerne wissen wie ich auf das Ergebnis komme
> und evtl. warum.
>

Bei f muss ja etwas falsch sein, zwischen -1 und 1 ist die Funktion doppelt definiert, das darf nicht sein.
Generell gilt. Interessant ist ja nur die Flickstelle (ganz wenige Ausnahmen) ansosten sind die beiden Teilfunktionen ja differenzierbar.
1. Test: haben beide Teilfuntkionen an der Flickstelle den geleichen Wert?
Wenn man den Wert auch einsetzen kann, er bloß nur vom Definitionsbereich her nicht zugelassen ist, dann ist das auch der Grenzwert.
Falls dieser Test nicht bestanden wird, ist die Funktion nicht stetig, also nicht differenzierbar.
ist die Funktion stetig folgt der
2. Test. Ableitungen beider Teilfunktionen ausrechnen. Stimmen sie an der Flickstelle überein, so ist die Gesamtfunktion differnezierbar, andernfalls nicht. Für die eine Teilfunktion liegt die Flickstelle nicht im Definitionsbereich. Wie bei Test 1: trotzdem ausrechnen, aber als Grenzwert bezeichnen.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de