www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - DTFTrafo
DTFTrafo < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DTFTrafo: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:38 Mo 08.03.2010
Autor: domerich

Aufgabe
f(n)= [mm] \sum_{k=-\inf}^{\inf}[(k+1)a^k*u(k)][a^{n-k}u(n-k)] [/mm]

wie kann man denn als Laie diese Summe vereinfachen?

es von Rechteckfolgen die Rede ich versteh nur bahnhof

        
Bezug
DTFTrafo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Di 09.03.2010
Autor: Marcel08

Poste doch mal die genaue Aufgabenstellung. :-)

Bezug
                
Bezug
DTFTrafo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 09.03.2010
Autor: domerich

das ist die H2009 aufg 6.2.1

Bezug
                        
Bezug
DTFTrafo: hier eintippen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Di 09.03.2010
Autor: Loddar

Hallo domerich!


> das ist die H2009 aufg 6.2.1

Oh ja, das ist nun wirklich sehr aussagekräftig und hilfreich. [kopfschuettel]

Was ist eigentlich so schwer daran (wenn man hier Hilfe erwartet), die Aufgabe direkt hier einzutippen? [motz]


Gruß
Loddar


Bezug
                        
Bezug
DTFTrafo: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Di 09.03.2010
Autor: leduart

Hallo
woher soll man wissen, was H2009 aufg 6.2.1  ist?
Gruss leduart

Bezug
                
Bezug
DTFTrafo: Hilfestellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:31 Di 09.03.2010
Autor: Marcel08

Hallo Matheraum, hallo domerich!



Nach Rücksprache mit domerich geht es um folgende Aufgabe:



Gegeben sei die zeitkontinuierliche, periodische Fourier-Transformierte (DTFT) [mm] F(j\Omega) [/mm] des zeitdiskreten Signals f(n), wobei [mm] F(j\Omega)=(-1)*\Omega+\pi, [/mm] mit [mm] \Omega\in[0,\pi) [/mm] eine Periode der periodisch fortgesetzten Funktion beschreibt (sägezahnförmiger Gesamtverlauf).


1.) Bestimmen Sie den Wert des zeitdiskreten Signals f(n) für n=0.




Mein Lösungsvorschlag dazu lautet:



Allgemein gilt zur Berechnung einer inversen zeitdiskreten Fourier-Transformierten die folgende Beziehung:


[mm] f(n)=\bruch{1}{2\pi}\integral_{-\pi}^{\pi}{F(j\Omega)*e^{j\Omega*n}d\Omega} [/mm]



1.) Aus der Skizze (in der Originalaufgabe ist sie gegeben) kannst du hinsichtlich des zu betrachtenden Intervalls eine Fallunterscheidung für die 2 zu untersuchenden Funktionen aufstellen.


2.) Diese zwei Funktionen kannst du dann entsprechend in die obige Formel einsetzen. Somit solltest du dann auch zwei Integrale erhalten.


3.) Die Aufgabenstellung erleichtert die Berechnung erheblich, da du noch n=0 setzen sollst. Somit wird die e-Funktion zum neutralen Faktor, sodass die partielle Integration hinfällig wird.





Gruß, Marcel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de