www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Dämpfungs-/Multiplikationssatz
Dämpfungs-/Multiplikationssatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dämpfungs-/Multiplikationssatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:08 Do 01.07.2010
Autor: egal

Aufgabe
f(t)=t²sin(at)

Löse die Laplace-Transformierte der Funktione mit Hilfe des Dämfpungssatzes oder des Multiplikationssatzes

Hallo,

L(t^2sin(at)) (s)

wir wissen ja dass:

[mm] f(t)=t^2 [/mm] -> [mm] F(s)=\bruch{2}{s^3} [/mm]
f(t)=sin(at) -> [mm] F(s)=\bruch{a}{s^2+1^2} [/mm]

eingesetzt ergibt es:

L(t²sin(at)) [mm] (s)=\bruch{2a}{(s^2+1^2)^3} [/mm]


Wolfram-Alpha sagt aber:

[mm] \bruch{2 (3 s^2-1)}{(s^2+1)^3} [/mm] (was mach ich falsch?)


Kann man denn generell sagen, dass alle Funktionen, die sich mit dem Dämpfungssatz lösen lassen, sich auch mit dem Multiplikationssatz lösen lassen?

Wie würde man bspw. bei der Aufgabe vorgehen, wenn man den Multiplikationssatz verwenden will?

Bei der Aufgabe: f(t)=tsin(at) wirds ja so gemacht, dass man die sin (at) verwendet, das rücktransformiert und abgeleitet ergibt die Lösung.

Nur wie gehe ich beim ersten Beispiel vor?


        
Bezug
Dämpfungs-/Multiplikationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Do 01.07.2010
Autor: MathePower

Hallo egal,


> f(t)=t²sin(at)
>  
> Löse die Laplace-Transformierte der Funktione mit Hilfe
> des Dämfpungssatzes oder des Multiplikationssatzes
>  Hallo,
>  
> L(t^2sin(at)) (s)
>  
> wir wissen ja dass:
>  
> [mm]f(t)=t^2[/mm] -> [mm]F(s)=\bruch{2}{s^3}[/mm]
>  f(t)=sin(at) -> [mm]F(s)=\bruch{a}{s^2+1^2}[/mm]

>  
> eingesetzt ergibt es:
>  
> L(t²sin(at)) [mm](s)=\bruch{2a}{(s^2+1^2)^3}[/mm]
>  
>
> Wolfram-Alpha sagt aber:
>  
> [mm]\bruch{2 (3 s^2-1)}{(s^2+1)^3}[/mm] (was mach ich falsch?)
>  


Um den Dämpfungssatz anwenden zu können. schreibe

[mm]\sin\left(a*t\right)=\bruch{1}{2i}\left({e^{i*a*t}-e^{-i*a*t}}\right)[/mm]


>
> Kann man denn generell sagen, dass alle Funktionen, die
> sich mit dem Dämpfungssatz lösen lassen, sich auch mit
> dem Multiplikationssatz lösen lassen?
>  
> Wie würde man bspw. bei der Aufgabe vorgehen, wenn man den
> Multiplikationssatz verwenden will?


Hier wird ist dann die Laplace-Transformierte von [mm]\sin\left(a*t\right)[/mm]
zweimal nach s zu differenzieren:

[mm]L\left( \ t^{2}*\sin\left(a*t\right) \ \right)=\left(-1\right)^{2}*\bruch{d^{2}}{ds}L\left( \ \sin\left(a*t\right) \ \right)[/mm]


>  
> Bei der Aufgabe: f(t)=tsin(at) wirds ja so gemacht, dass
> man die sin (at) verwendet, das rücktransformiert und
> abgeleitet ergibt die Lösung.


>  
> Nur wie gehe ich beim ersten Beispiel vor?
>  


Gruss
MathePower

Bezug
        
Bezug
Dämpfungs-/Multiplikationssatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 03.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de