www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Darst. der Lösung eines LGS
Darst. der Lösung eines LGS < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darst. der Lösung eines LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mo 20.09.2010
Autor: Stefan-auchLotti

Hallo,

wie ja bekannt ist, lässt sich die allgemeine Lösung eines inhomogenen LGS so darstellen lässt:

[mm] $$L(A,b)=k_0+L(A,0)$$ [/mm]

wobei [mm] $k_0$ [/mm] eine Lösung des inhomogenen Systems ist.

Wenn wir nun ein inhomogenes LGS mit einem Freiheitsgrad haben, so ist das kein Problem: wir schreiben z.B.

[mm] $$\vektor{0 \\ 0\\2\\0\\2}+\left\langle\vektor{0\\1\\0\\2\\0}\right\rangle$$ [/mm]

Wie schreibt man's aber auf, wenn die allgemeine Lösung des inh. LGS zwei oder mehr frei wählbare Parameter enthält, also z.B. folgende Form hat:

[mm] $\left\{\vektor{b\\a+b\\4\\5\\2b}~\vrule~a,b\in \IF_{4}\right\}$ [/mm]

        
Bezug
Darst. der Lösung eines LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 13:13 Mo 20.09.2010
Autor: angela.h.b.


> Hallo,
>  
> wie ja bekannt ist, lässt sich die allgemeine Lösung
> eines inhomogenen LGS so darstellen lässt:
>  
> [mm]L(A,b)=k_0+L(A,0)[/mm]
>  
> wobei [mm]k_0[/mm] eine Lösung des inhomogenen Systems ist.
>  
> Wenn wir nun ein inhomogenes LGS mit einem Freiheitsgrad
> haben, so ist das kein Problem: wir schreiben z.B.
>  
> [mm]\vektor{0 \\ 0\\ 2\\ 0\\ 2}+\left\langle\vektor{0\\ 1\\ 0\\ 2\\ 0}\right\rangle[/mm]
>  
> Wie schreibt man's aber auf, wenn die allgemeine Lösung
> des inh. LGS zwei oder mehr frei wählbare Parameter
> enthält, also z.B. folgende Form hat:
>  
> [mm]\left\{\vektor{b\\ a+b\\ 4\\ 5\\ 2b}~\vrule~a,b\in \IF_{4}\right\}[/mm]

Hallo,

Du kannst dann schreiben

[mm] \vektor{0\\0\\4\\5\\0}+<\vektor{0\\1\\0\\0\\0},\vektor{1\\1\\0\\0\\2}>_{\IF_4}. [/mm]

Gruß v. Angela

P.S.: Eigentlich hat es nichts mit Deiner Frage zu tun, aber was ist eigentlich mit [mm] \IF_4 [/mm] genau gemeint? Der Körper mit 4 Elementen? Und was bedeuten die Einträge 4 und 5 im Spaltenvektor? Mich irritiert das gerade etwas...






Bezug
                
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Mo 20.09.2010
Autor: Stefan-auchLotti

Dankeschön :)

Genau, das ist der Restklassenkörper [mm] $\IZ/ 4\IZ$. [/mm]

4 und 5 sind in dem Zusammenhang dann natürlich 0 und 1, hab ich gar nicht dran gedacht.

Bis bald,

Stefan.

Bezug
                        
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Mo 20.09.2010
Autor: angela.h.b.


> Genau, das ist der Restklassenkörper [mm]\IZ/ 4\IZ[/mm].

[mm] $\IZ/ 4\IZ$ [/mm] ist aber kein Körper...

Gruß v. Angela



Bezug
                                
Bezug
Darst. der Lösung eines LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Mo 20.09.2010
Autor: Stefan-auchLotti

Bei mir war 4 gerade eine Primzahl. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de