www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Darstellende Matrix
Darstellende Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 24.09.2009
Autor: ufuk

Aufgabe
[Dateianhang nicht öffentlich]

Hallo!

Hier komme ich an einer Stelle nicht ganz weiter.

Ich benutze folgenden Ansatz:

[mm] M_{B}^{A}(F)=(K_{B}(F(a_1)), K_{B}(F(a_2)), [/mm] ... [mm] K_{B}(F(a_n))) [/mm]

A und B sind die Basen.

Auf diese Weise komme ich bis hierhin:

[mm] M_{\varepsilon}^{\varepsilon}(P_a)=(K_{\varepsilon}(\cos{\varphi}*a),K_{\varepsilon}(\sin{\varphi}*a)) [/mm]

Nur wie drücke ich jetzt a zur Basis [mm] \varepsilon [/mm] aus?

ratloser Gruß

ufuk


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Do 24.09.2009
Autor: leduart

Hallo
keine Ahnung was deine K und F sind. dehalb kann ich zu deinem Ansatz nichts sagen. Aber [mm] a=|a|*sin\phi*e_x+|a||*cos\phi*e_y [/mm]
War das die Frage?
Gruss leduart

Bezug
                
Bezug
Darstellende Matrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:37 Fr 25.09.2009
Autor: ufuk


>  keine Ahnung was deine K und F sind.

F ist die Lineare Abbildung, K sind die Koordinaten zur Basis B.

Vielleicht gehe ich die Aufgabe ja auch komplett falsch an, weiß jemand einen beliebigen anderen Lösungsweg?

Bezug
        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Fr 25.09.2009
Autor: angela.h.b.


> [Dateianhang nicht öffentlich]
>  Hallo!
>  
> Hier komme ich an einer Stelle nicht ganz weiter.
>
> Ich benutze folgenden Ansatz:
>  
> [mm]M_{B}^{A}(F)=(K_{B}(F(a_1)), K_{B}(F(a_2)),[/mm] ...
> [mm]K_{B}(F(a_n)))[/mm]
>  
> A und B sind die Basen.
>  
> Auf diese Weise komme ich bis hierhin:
>  
> [mm]M_{\varepsilon}^{\varepsilon}(P_a)=(K_{\varepsilon}(\cos{\varphi}*a),K_{\varepsilon}(\sin{\varphi}*a))[/mm]


Hallo,

wir haben also lt. Aufgabenstellung die Basis A:=(a, b) mit |a|=1 und [mm] a\perp [/mm] b, sowie die ONB [mm] E:=(e_x, e_y). [/mm]

Jetzt schauen wir uns erstmal an, was die Abbildung [mm] P_a [/mm] mit den Basisvektoren macht:

[mm] P_a(a)=a [/mm]
[mm] P_a(b)=0. [/mm]


Damit kannst Du [mm] M_A^A(P_a) [/mm] schon aufstellen.


Jetzt überlegen wir uns noch, wie die Basisvektoren zusammenhängen:

[mm] a=cos\phi e_x +sin\phi e_y [/mm]
b= -|b| [mm] sin\phi e_x+|b|cos\phi e_y. [/mm]

Damit habe ich die eigentliche Frage wohl schon beantwortet.

Gruß v. Angela







Bezug
                
Bezug
Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Fr 25.09.2009
Autor: ufuk


> Hallo,
>  
> wir haben also lt. Aufgabenstellung die Basis A:=(a, b) mit
> |a|=1 und [mm]a\perp[/mm] b, sowie die ONB [mm]E:=(e_x, e_y).[/mm]
>  
> Jetzt schauen wir uns erstmal an, was die Abbildung [mm]P_a[/mm] mit
> den Basisvektoren macht:
>  
> [mm]P_a(a)=a[/mm]
>  [mm]P_a(b)=0.[/mm]
>  
>
> Damit kannst Du [mm]M_A^A(P_a)[/mm] schon aufstellen.

Das wäre dann einfach [mm] \pmat{ a & 0} [/mm] ?

>  
>
> Jetzt überlegen wir uns noch, wie die Basisvektoren
> zusammenhängen:
>  
> [mm]a=cos\phi e_x +sin\phi e_y[/mm]
>  b= -|b| [mm]sin\phi e_x+|b|cos\phi e_y.[/mm]
>  
> Damit habe ich die eigentliche Frage wohl schon
> beantwortet.
>
> Gruß v. Angela

Dann wäre [mm]M^A_\varepsilon(P_a)[/mm] also:

[mm] \pmat{ cos\phi e_x +sin\phi e_y & 0 } [/mm] ?

Bleiben noch die zwei Fälle [mm]M_\varepsilon^\varepsilon(P_a)[/mm] und [mm]M_A^\varepsilon(P_a)[/mm]


[mm]M_\varepsilon^\varepsilon(P_a)[/mm] = ?

[mm]M_A^\varepsilon(P_a)[/mm] = ?

Dafür müsste ich dann [mm] e_x [/mm] und [mm] e_y [/mm] durch a und b ausdrücken?




Bezug
                        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 Fr 25.09.2009
Autor: angela.h.b.


> > Hallo,
>  >  
> > wir haben also lt. Aufgabenstellung die Basis A:=(a, b) mit
> > |a|=1 und [mm]a\perp[/mm] b, sowie die ONB [mm]E:=(e_x, e_y).[/mm]
>  >  
> > Jetzt schauen wir uns erstmal an, was die Abbildung [mm]P_a[/mm] mit
> > den Basisvektoren macht:
>  >  
> > [mm]P_a(a)=a[/mm]
>  >  [mm]P_a(b)=0.[/mm]
>  >  
> >
> > Damit kannst Du [mm]M_A^A(P_a)[/mm] schon aufstellen.
>  
> Das wäre dann einfach [mm]\pmat{ a & 0}[/mm] ?

Hallo,

nein.

Du hast doch in Deinem anderen Post geschreiben, was in den Spalten der Matrix stehen muß:

die Bilder der Basisvektoren von A, also [mm] P_a(a) [/mm] und [mm] P_a(b), [/mm] in Koordinaten bzgl der Basis A.

Wie lautet a in Koordinaten bzgl A=(a,b), und wie lautet 0 in diesen Koordinaten?

>  
> >  

> >
> > Jetzt überlegen wir uns noch, wie die Basisvektoren
> > zusammenhängen:
>  >  
> > [mm]a=cos\phi e_x +sin\phi e_y[/mm]
>  >  b= -|b| [mm]sin\phi e_x+|b|cos\phi e_y.[/mm]
>  
> >  

> > Damit habe ich die eigentliche Frage wohl schon
> > beantwortet.
> >
> > Gruß v. Angela
>  
> Dann wäre [mm]M^A_\varepsilon(P_a)[/mm] also:
>  
> [mm]\pmat{ cos\phi e_x +sin\phi e_y & 0 }[/mm] ?

Du mußt die  Vektoren  [mm] cos\phi e_x +sin\phi e_y [/mm] und 0 in Koordinaten bzgl. der Basis [mm] \varepsilon=(e_x, e_y) [/mm] schreiben.

Also ist  [mm]M^A_\varepsilon(P_a)[/mm] [mm] =\pmat{cos\phii&0\\sin\phi&0} [/mm]


>  
> Bleiben noch die zwei Fälle [mm]M_\varepsilon^\varepsilon(P_a)[/mm]
> und [mm]M_A^\varepsilon(P_a)[/mm]
>
>
> [mm]M_\varepsilon^\varepsilon(P_a)[/mm] = ?

In die Spalten dieser Matrix gehören die Bilder von [mm] e_x [/mm] und [mm] e_y [/mm] in Koordinaten bzgl. [mm] \varepsilon. [/mm]

>  
> [mm]M_A^\varepsilon(P_a)[/mm] = ?
>  
> Dafür müsste ich dann [mm]e_x[/mm] und [mm]e_y[/mm] durch a und b
> ausdrücken?

In die Spalten dieser Matrix gehören die Bilder von [mm] e_x [/mm] und [mm] e_y [/mm] in Koordinaten bzgl. A.

Gruß v. Angela

>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de