www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Darstellungsmatrix
Darstellungsmatrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 So 03.06.2012
Autor: EvelynSnowley2311

Aufgabe
Es sei durch $f : [mm] \IR^3 [/mm]  [mm] \times \IR^3 \to \IR$ [/mm] eine Bilinearform definiert (dies muss nicht gezeigt werden!)
$f [mm] ((x_1, x_2, x_3)^T, (y_1, y_2, y_3)^T) [/mm] = [mm] 3x_1y_1 [/mm] - [mm] 2x_1y_3 [/mm] + [mm] x_2y_2 [/mm] - [mm] 3x_3y_2 [/mm] + [mm] 2x_3y_3$. [/mm]
Bestimmen Sie die Matrixdarstellung der Bilinearform $f$ bezüglich der kanonischen Basis und bezüglich der Basis
$B = ((1, 2, [mm] 1)^T, [/mm] (3, 1, [mm] 0)^T, [/mm] (2, 0, [mm] 0)^T)$. [/mm]


huhu,

also normalerweise würde ich den Vektor (ich denke mal einen Vektor der Basis 2 mal sozusagen in die Funktion eingeben als y UND x [mm] \in \IR^3 [/mm] )
Dabei kriege ich ja immer ein einzelne Zahl, also kein  Vektor a la [mm] \IR^3 [/mm] mehr. Normalerweise würd ich, nachdem ich den Vektor durch die Funktion abgebildet habe, diesen als Linearkombination der Vektoren der anderen Basis darstellen diese sind aber ja immernoch 3 dimensional und sowas wie (beispielsweise)


5 = [mm] \lambda_1 \vektor{1 \\ 4 \\ 3} [/mm] + [mm] \lambda_2 \vektor{5 \\ 5 \\ 4} [/mm]


kann man ja gar nicht lösen! wie muss ich vorgehen?


Gruß,
Eve

        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 So 03.06.2012
Autor: angela.h.b.


> Es sei durch f : [mm]\IR^3[/mm]  x [mm]\IR^3 \to \IR[/mm] eine Bilinearform
> definiert (dies muss nicht gezeigt werden!)
>  f ((x1, x2, [mm]x3)^T,[/mm] (y1, y2, [mm]y3)^T)[/mm] = 3x1y1 - 2x1y3 + x2y2
> - 3x3y2 + 2x3y3
>  Bestimmen Sie die Matrixdarstellung der Bilinearform f
> bezüglich der kanonischen Basis und bezüglich
>  der Basis
>  B = ((1, 2, [mm]1)^T,[/mm] (3, 1, [mm]0)^T,[/mm] (2, 0, [mm]0)^T).[/mm]

Hallo,

etwas ganz Wesentliches ist Dir entgangen: es geht hier nicht um die Darstellungsmatrix einer linearen Abbildung, sondern um die Darstellungsmatrix einer Bilinearform ("Gram-Matrix").

Wenn [mm] B:=(b_1,...,b_n) [/mm] Deine Basis ist, so hast Du die Gram-Matrix [mm] A:=(a_i_k) [/mm] mit [mm] a_i_k=f(b_i, b_k). [/mm]

LG Angela


Bezug
                
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 So 03.06.2012
Autor: EvelynSnowley2311


>
> > Es sei durch f : [mm]\IR^3[/mm]  x [mm]\IR^3 \to \IR[/mm] eine Bilinearform
> > definiert (dies muss nicht gezeigt werden!)
>  >  f ((x1, x2, [mm]x3)^T,[/mm] (y1, y2, [mm]y3)^T)[/mm] = 3x1y1 - 2x1y3 +
> x2y2
> > - 3x3y2 + 2x3y3
>  >  Bestimmen Sie die Matrixdarstellung der Bilinearform f
> > bezüglich der kanonischen Basis und bezüglich
>  >  der Basis
>  >  B = ((1, 2, [mm]1)^T,[/mm] (3, 1, [mm]0)^T,[/mm] (2, 0, [mm]0)^T).[/mm]
>  
> Hallo,
>  
> etwas ganz Wesentliches ist Dir entgangen: es geht hier
> nicht um die Darstellungsmatrix einer linearen Abbildung,
> sondern um die Darstellungsmatrix einer Bilinearform
> ("Gram-Matrix").
>  
> Wenn [mm]B:=(b_1,...,b_n)[/mm] Deine Basis ist, so hast Du die
> Gram-Matrix [mm]A:=(a_i_k)[/mm] mit [mm]a_i_k=f(b_i, b_k).[/mm]
>  


oh das ist ja dann wirklich was anderes hmm?

edit: habs mal bei wikipedia angeguckt und ich denke ich kriegs hin^^ kann geschlossen werden danke ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de