www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Das Integral
Das Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Das Integral: Flächenberechnung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:54 Do 13.10.2005
Autor: Lambda

Hallo! Ich habe zwei Aufgaben, mit denen ich überhaupt nicht klar komme und schreibe morgen eine Klausur. Bitte Hilfe!

Aufgabe 1: Die Funktion f ist gegeben durch f(x)= [mm] \bruch{1}{4}x^{3} [/mm] - [mm] \bruch{3}{4}x^{2} [/mm] - [mm] \bruch{9}{4}x [/mm] + [mm] \bruch{11}{4} [/mm] . Zeige, dass die Tangenten in den Extrempunkten von f mit dem Graphen von f jeweils Flächen mit gleichem Flächeninhalt einschließen.

Aufgabe 2: Bestimme die Parallele zur 1. Achse, die mit dem Graphen von    f(x)= [mm] x^{2} [/mm] eine Fläche mit dem Flächeninhalt [mm] \bruch{8}{3} [/mm] *  [mm] \wurzel{2} [/mm] einschließt.


Danke!

Gruß, Lambda

        
Bezug
Das Integral: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 18:08 Do 13.10.2005
Autor: Roadrunner

Hallo Lambda!


> Aufgabe 2: Bestimme die Parallele zur 1. Achse, die mit dem
> Graphen von    f(x)= [mm]x^{2}[/mm] eine Fläche mit dem
> Flächeninhalt [mm]\bruch{8}{3}[/mm] *  [mm]\wurzel{2}[/mm] einschließt.

Nennen wir unsere Parallele zur x-Achse mal:  $g(x) \ = \ a$.


Dann müssen wir uns zunächst die Integrationsgrenzen der betrachteten Fläche ermitteln, die Schnittstellen der beiden Kurven:

[mm] $x^2 [/mm] \ = \ a$     [mm] $\gdw$ $x_{1/2} [/mm] \ = \ [mm] \pm \wurzel{a}$ [/mm]


Nun ermitteln wir uns die Fläche durch Integralrechnung:

$A \ = \ [mm] \integral_{x_1}^{x_2}{g(x)-f(x) \ dx} [/mm] \ = \ [mm] \integral_{x_1}^{x_2}{a-x^2 \ dx} [/mm] \ = \ [mm] \integral_{-\wurzel{a}}^{+\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \bruch{8}{3}\wurzel{2}$ [/mm]


Aus Symmetriegründen gilt:  [mm] $\integral_{-\wurzel{a}}^{+\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \red{2}*\integral_{0}^{\wurzel{a}}{a-x^2 \ dx}$ [/mm]


Damit lautet unsere Bestimmungsgleichung also:

[mm] $2*\integral_{0}^{\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \bruch{8}{3}\wurzel{2}$ [/mm]     bzw.     [mm] $\integral_{0}^{\wurzel{a}}{a-x^2 \ dx} [/mm] \ = \ [mm] \bruch{4}{3}\wurzel{2}$ [/mm]


Kannst Du nun nach $a_$ auflösen?

Kontrollergebnis: $a \ = \ 2$


Gruß vom
Roadrunner


Bezug
        
Bezug
Das Integral: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:20 Do 13.10.2005
Autor: Roadrunner

Hallo Lambda!


> Aufgabe 1:
> Die Funktion f ist gegeben durch [mm]f(x)=\bruch{1}{4}x^{3} - \bruch{3}{4}x^{2} - \bruch{9}{4}x + \bruch{11}{4}[/mm] .
> Zeige, dass die Tangenten in den
> Extrempunkten von f mit dem Graphen von f jeweils Flächen
> mit gleichem Flächeninhalt einschließen.

Hast Du Dir denn mal die beiden Extremstellen sowie die zugehörigen Funktionswerte berechnet.

Dann hast Du auch gleich die beiden Geradengleichungen der entsprechenden Tangenten.


Dann musst Du Dir zu jeder Tangente jeweils den zweiten Schnittpunkt mit der Funktion $f(x)_$ berechnen und hast damit für die Integralrechnung die zweite Integrationsgrenze.

Hier nun analog zu Aufgabe 2 die Flächen per Integral berechnen und vergleichen.


Hier mal eine kleine Skizze zur Veranschaulichung:

[Dateianhang nicht öffentlich]


Gruß vom
Roadrunner


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de