www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Das tragfähigste Boot...
Das tragfähigste Boot... < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Das tragfähigste Boot...: Korrektur
Status: (Frage) überfällig Status 
Datum: 17:25 Fr 24.11.2006
Autor: Goldener_Sch.

Aufgabe
(enstpricht der Frage!)

Hallo Leute!!
...und einen schönen Nachmittag!!!

So, ich habe mal folgende Frage an euch:

Wenn man aus z.B. einem Stücke Papier ein Boot so falten will, dass man etwas damit "über´s Wasser" transportieren könnte;-); dann faltet man ja quasi einen Quader der oben offen ist.
So nun ist dies nach dem Archiemed´schen Gesetz ja am größten, wenn das Volumen am größten ist! Hört sich nach einer spannenden Extremwertaufgabe an...
...so und dazu kommen nun meine Überlegungen:
Die Seitenlängen des Blattes seien [mm]l_1,l_2[/mm].
Dann ist doch:


[mm]V(a,b,c)=a*b*c[/mm]

...wobei gelte:[mm]a:=l_1-2h,b:=l_2-2h,c:=h[/mm], wodurch man erhält:

[mm]V(h)=(l_1-2h)*(l_2-2h)*h[/mm]

Ist da schon mein Fehler??

Naja, mal angenommen nein:-), dann ist:

[mm]V'(h)=12h^2-4*(l_1+l_2)*h+l_1*l_2[/mm]

...dann würde aus [mm]V'(h)=0[/mm] duch ein par Umformungen folgen, dass gilt:

[mm]h_{max}=\left \bruch{l_1+l_2+\wurzel{l_1^2+l_2^2-l_1*l_2}}{6} \right[/mm]

(hierbei vernachlässige ich bewusst die (Teil-) Lösung, die einen negativen Gesamtausdruck hervorruft!)

...wobei [mm]h_{max}[/mm] genau das [mm]h[/mm] sei, wofür [mm]V(h_{max}) \ge V(h)[/mm] gelte.


So, jetzt höre ich hier erstmal auf und erwarte mit Spannung, ob all diese Überlegungen falsch sind;-)!



So, ich bedanke mich im Vorraus schon mal für eure Antworten! DANKE!



Mit den besten Grüßen

Goldener Schnitt

        
Bezug
Das tragfähigste Boot...: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Fr 24.11.2006
Autor: Zwerglein

Hi, Goldener_Sch,

> [mm]V'(h)=12h^2-4*(l_1+l_2)+l_1*l_2[/mm]

Das rechne ich nicht nach! Jedenfalls müsste ja wohl im mittleren Summanden ein h stehen?!
  

> ...dann würde aus [mm]V'(h)=0[/mm] duch ein par Umformungen folgen,
> dass gilt:
>  
> [mm]h_{max}=\left \bruch{l_1+l_2+\wurzel{l_1^2+l_2^2-l_1*l_2}}{6} \right[/mm]

Bist Du sicher, dass vor der Wurzel nicht das "-" stehen muss? Hast Du nachgeprüft, ob Dein h in der Definitionsmenge liegt?
(h muss kleiner sein als die Hälfte der kürzeren der beiden Längen!)

mfG!
Zwerglein


Bezug
        
Bezug
Das tragfähigste Boot...: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:30 So 26.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de