www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - De Morgan Beweistabelle
De Morgan Beweistabelle < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

De Morgan Beweistabelle: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:31 Sa 20.10.2007
Autor: Audience

Aufgabe
Es seien A,B,C Mengen. Beweisen Sie die Regel von De Morgan:

C \ (A [mm] \cup [/mm] B) = (C \ A) [mm] \cap [/mm] (C \ B)

Tipp: Ein x kann entweder Element von A oder nicht Element von A sein, genauso für B und
C. Überlegen Sie, wie viele mögliche F¨alle es gibt, und weisen Sie in jedem dieser Fälle nach,
dass x entweder in beiden Mengen, deren Gleichheit zu beweisen ist, liegt oder in keiner. Am übersichtlichsten ist eine Tabelle.

Eigentlich habe ich schon verstanden was von mir verlangt wird aber ich weiß nicht ob ichs richtig hinschreiben kann. Also mein Ansatz:
Mögliche Varianten:
x [mm] \in [/mm] A; x [mm] \in [/mm] A und B;
x [mm] \in [/mm] A, B und C; x [mm] \in [/mm] A und C;
x [mm] \in [/mm]  B; x [mm] \in [/mm] B und C;
x [mm] \in [/mm] C;

Erster Fall x [mm] \in [/mm] A:
C \ ({x} [mm] \cup [/mm] B) = (C \ {x}) [mm] \cap [/mm] (C \ B)
=> C \ {x} = C \ {x} [mm] \cap [/mm] (C \ B)
=> {} = {}

Also ist x in keiner dieser Mengen enthalten. Aber ich glaube die Formulierung ist nicht mathematisch korrekt oder ich liege logisch falsch.
Danke für alle Antworten,
Gruß,
Thomas

        
Bezug
De Morgan Beweistabelle: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Sa 20.10.2007
Autor: leonhard

Du hast eine Möglichkeit vergessen, nämlich dass $x$ weder in $A$, $B$ noch $C$ ist.

Für jede Menge kann $x$ enthalten sein oder nicht. Bei deiner ersten Möglichkeit [mm] $x\in [/mm] A$ solltest Du auch noch aufschreiben, dass $x$ nicht in den anderen beiden Mengen ist, denn diese Fälle behandelst Du ja getrennt.

Es gibt also acht möglichkeiten:
1) [mm] $x\notin [/mm] A, [mm] x\notin [/mm] B, [mm] x\notin [/mm] C$
2) [mm] $x\notin [/mm] A, [mm] x\notin [/mm] B, [mm] x\in [/mm] C$
3) [mm] $x\notin [/mm] A, [mm] x\in [/mm] B, [mm] x\notin [/mm] C$
4) [mm] $x\notin [/mm] A, [mm] x\in [/mm] B, [mm] x\in [/mm] C$
5) [mm] $x\in [/mm] A, [mm] x\notin [/mm] B, [mm] x\notin [/mm] C$
6) [mm] $x\in [/mm] A, [mm] x\notin [/mm] B, [mm] x\in [/mm] C$
7) [mm] $x\in [/mm] A, [mm] x\in [/mm] B, [mm] x\notin [/mm] C$
8) [mm] $x\in [/mm] A, [mm] x\in [/mm] B, [mm] x\in [/mm] C$

Es soll die Gleichheit der beiden Mengen $L = C [mm] \setminus (A\cup [/mm] B)$ und
$R = [mm] (C\setminus A)\cap(C\setminus [/mm] B)$ gezeigt werden.
($L$ und $R$ sind nur Namen die ich den beiden Teilen gegeben habe, um
nicht immer die ganze Formel schreiben zu müssen.)

Um zu zeigen, dass $L=R$, muss ich für alle $x$ zeigen dass $x$ genau dann in $R$ ist, wenn es auch in $L$ ist. Für alle $x$ hört sich nach wahnsinnig viel an, aber wir haben oben gesehen, dass jedes $x$ in eine der 8 Möglichkeiten gehört. Es reich also die Gleichheit für die 8 Möglichkeiten zu zeigen.

Ich mache hier mal die Möglichkeit 1) als Beispiel
1) a) ist [mm] $x\in [/mm] L$? - nein, denn [mm] $x\notin [/mm] C$
    b) ist [mm] $x\in [/mm] R$? Weil [mm] $x\notin [/mm] C$ ist auch [mm] $x\notin C\setminus [/mm] A$ und
         [mm] $x\notin C\setminus [/mm] B$, also auch nicht in der Schnittmenge $R$
        $x$ ist also weder in $L$ noch in $R$. Bedingung erfüllt.

Ist für alle acht Möglichkeiten entweder [mm] $x\notin [/mm] L$ und [mm] $x\notin [/mm] R$ oder
[mm] $x\in [/mm] L$ und [mm] $x\in [/mm] R$, so ist die Gleichheit von $L$ und $R$ bewiesen.


Bezug
                
Bezug
De Morgan Beweistabelle: Richtige Schreibweise?
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 20.10.2007
Autor: Audience

Danke für die Antwort, allerdings weiß ich nicht wie ich das jetzt mathematisch korrekt hinschreiben soll. Sind natursprachliche Sätze überhaupt erlaubt?

Bezug
                        
Bezug
De Morgan Beweistabelle: Antwort
Status: (Antwort) fertig Status 
Datum: 19:39 Sa 20.10.2007
Autor: Bastiane

Hallo Audience!

> Danke für die Antwort, allerdings weiß ich nicht wie ich
> das jetzt mathematisch korrekt hinschreiben soll. Sind
> natursprachliche Sätze überhaupt erlaubt?

Ja, selbstverständlich. In einer meiner ersten Matheklausuren an der Uni hat der Prof uns sogar extra darauf hingewiesen, dass wir doch bitte sprachlich korrekte Sätze schreiben sollten: mit Subjekt, Prädikat und Objekt. :-) Oft ist es einfacher, Beweise "mathematisch" aufzuschreiben, aber in diesem Fall würde ich so weiter machen, wie mein Vorredner angefangen hat. :-)

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de