www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Def. mehrdim. Verteilung
Def. mehrdim. Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Def. mehrdim. Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Sa 12.03.2011
Autor: Pille456

Aufgabe
Seien [mm] X_1,...,X_n [/mm] (diskrete) Zufallsvariablen auf einem Wahrscheinlichkeitsraum [mm] (\Omega,P). [/mm] Auf dem Produktraum [mm] X_1(\Omega)\cross...\cross X_n(\Omega) [/mm] ist die gemeinsame Verteilung [mm] p^{X_1,...,X_n} [/mm] gegeben durch [mm] p^{X_1,...,X_n}(x_1,...,x_n)=P(X_1=x_1,...,X_n=x_n) [/mm]
für alle [mm] x_1,...,x_n [/mm] mit [mm] x_i \in X_i(\Omega) [/mm]


Hi,

Ich habe mit der Definition ein paar Probleme und bin mir nicht sicher, ob ich dazu ein passendes Beispiel finde:
Nehmen wir mal den Münzwurf an mit [mm] \Omega [/mm] = [mm] \{Kopf, Zahl\} [/mm]
Nun sei [mm] X_1(Kopf) [/mm] = 1 und [mm] X_1(Zahl) [/mm] = 2 und [mm] X_2(Kopf) [/mm] = 10 und [mm] X_2(Zahl) [/mm] = 20
Für das Ergebnis "Kopf" schreibe ich dann: [mm] p^{X_1,X_2}(Kopf,Kopf) [/mm] = [mm] P(X_1=Kopf, X_2=Kopf)=P(1,10) [/mm]
oder?
Hierbei habe ich noch keinerlei Aussage über die W'keit, d.h. den Wert von P(1,10) gemacht.
Es wird im Skript auch nur durch eine Randbemerkung gesagt, dass P tatsächlich eine Zähldichte ist (was mir jetzt intuitiv klar erscheint, der Beweis wird nur nochmals formal geführt)

Wenn das soweit korrekt ist, wofür dann diese Erweiterung auf den mehrdimensionalen Bereich? Ist das einfach mathematisch zur Vollständigkeit oder gibt es tatsächlich Anwendungen für verschiedene ZVe [mm] X_1,..,X_n [/mm] auf einem Grundraum in einer Problemstellung?

Gruß
Pille


        
Bezug
Def. mehrdim. Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Sa 12.03.2011
Autor: luis52

Moin,

so ist das nicht korrekt.  Du musst zwischen den Ereignissen
[mm] $(X_1=x_1,X_2=x_2)=\{\omega\mid \omega\in\Omega,X_1(\omega)=x_1,X_2(\omega)=x_2\}\subset\Omega$ [/mm]
und den zugehoerigen Wahrscheinlichkeiten unterscheiden.

Mehrdimensionale Zufallsvariablen braucht man beispielsweise um mehrere
Merkmale an einem Merkmalstraeger zu modellieren, wie Geschlecht,
Koerpergroesse, - gewicht usw.

vg Luis        

Bezug
                
Bezug
Def. mehrdim. Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 So 13.03.2011
Autor: Pille456

Ahh okay, nur damit ich dass nun richtig verstehe:
[mm] p^{X_1,X_2}(x_1,x_2)=P(X_1=x_1,X_2=x_2) [/mm] gibt die Wahrscheinlichkeit an, dass ein Ereigniss aus dem Grundraum [mm] \Omega [/mm] eingetreten ist, sodass die Merkmale [mm] X_1 [/mm] und [mm] X_2 [/mm] gelten?
In Mengenschreibweise entspricht das der Vereinigung von Mengen, für die jeweils [mm] X_1=x_1 [/mm] und [mm] X_2=x_2 [/mm] gilt oder?

Bezug
                        
Bezug
Def. mehrdim. Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 So 13.03.2011
Autor: luis52


> Ahh okay, nur damit ich dass nun richtig verstehe:
>  [mm]p^{X_1,X_2}(x_1,x_2)=P(X_1=x_1,X_2=x_2)[/mm] gibt die
> Wahrscheinlichkeit an, dass ein Ereigniss aus dem Grundraum
> [mm]\Omega[/mm] eingetreten ist, sodass die Merkmale [mm]X_1[/mm] und [mm]X_2[/mm]
> gelten?

Besser: Wo [mm] $(X_1=x_1\cap X_2=x_2)$ [/mm] eintritt.

>  In Mengenschreibweise entspricht das der Vereinigung von
> Mengen, für die jeweils [mm]X_1=x_1[/mm] und [mm]X_2=x_2[/mm] gilt oder?

So kann man das sagen.

vg luis


Bezug
                                
Bezug
Def. mehrdim. Verteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 So 13.03.2011
Autor: Pille456

Super, danke! ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de