www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Definition Grenzwert
Definition Grenzwert < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Sa 03.12.2011
Autor: Gerad

Hallo,

blöde Frage aber ich will es einfach verstehn :/

Ist [mm] (a_n)_{n\in\N} [/mm] eine Folge reeller Zahlen, so ist die Zahl [mm] a\in\R [/mm] der Grenzwert dieser Folge und die Folge konvergiert gegen a, falls für jedes ε > 0 in dem Intervall (a − ε,a + ε) um a ab einem gewissen Index alle Glieder innerhalb und nur endlich viele Glieder der Folge [mm] (a_n)_{n\in\N} [/mm] außerhalb liegen. (Definition gemäß wikipedia)

Ich versteh soweit alles außer was jetzt genau das ε ist, was es aussagt und wieso man dieses ε nimmt... könnte mir jemand den Zusammenhang kurz erklären, wenn es möglich wäre mit einfachen Worten =)

Vielen Dank

        
Bezug
Definition Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 03.12.2011
Autor: notinX

Hallo,

> Hallo,
>  
> blöde Frage aber ich will es einfach verstehn :/
>  
> Ist [mm](a_n)_{n\in\N}[/mm] eine Folge reeller Zahlen, so ist die
> Zahl [mm]a\in\R[/mm] der Grenzwert dieser Folge und die Folge
> konvergiert gegen a, falls für jedes ε > 0 in dem
> Intervall (a − ε,a + ε) um a ab einem gewissen Index
> alle Glieder innerhalb und nur endlich viele Glieder der
> Folge [mm](a_n)_{n\in\N}[/mm] außerhalb liegen. (Definition gemäß
> wikipedia)
>  
> Ich versteh soweit alles außer was jetzt genau das ε ist,
> was es aussagt und wieso man dieses ε nimmt... könnte mir
> jemand den Zusammenhang kurz erklären, wenn es möglich
> wäre mit einfachen Worten =)
>  
> Vielen Dank

das [mm] $\varepsilon$ [/mm] ist eine beliebige reelle Zahl größer 0. Man könnte es auch [mm] $\phi$, $\zeta$, [/mm] oder $q$ nennen. Es ist aber üblich es mit [mm] $\varepsilon$ [/mm] zu bezeichnen. In der Mathematik wird [mm] $\varepsilon$ [/mm] oft verwendet um Variablen zu kennzeichnen, die beliebig klein sein können.
Das bedeutet, dass ab einem bestimmten Index alle Folgenglieder innerhalb der sogenannten [mm] $\varepsilon$-Umgebung [/mm] um den Grenzwert liegen. Das heißt, die Folgenglieder "sammeln" sich immer näher um den Grenzwert und mach keine großen Abweichungen mehr davon.
Siehe []hier

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de