www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Definition Stetigkeit
Definition Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Stetigkeit: Def. Stetigkeit
Status: (Frage) beantwortet Status 
Datum: 11:45 Do 08.03.2007
Autor: AndyH

Aufgabe
Sei z.B. f: [mm] [0,1]\cup \{2 \} \to \IR [/mm] mit

[mm] f(x)=\begin{cases} x^2, & \mbox{für } 0 \le x \le 1 \\ 1, & \mbox{für } x = 2 \end{cases} [/mm]

Ist  f in x=2 stetig?

Hallo Leute.
Die Aufgabe scheint recht simpel, verwirrt mich aber, weil ich auf verschiedene Def. von Stetigkeit stoße.
Epsilon-Delta lassen wir bitte mal außen vor.

Bei Otto Forster (analysis 1) heißt es schlicht:

"Sei f: D [mm] \to \IR [/mm] eine Funktion und a [mm] \in [/mm] D.
Die Funktion f heißt stetig im Punkt a, falls
[mm] \limes_{x\rightarrow a} [/mm] f(x) = f(a)

f heißt stetig in D , falls f in jedem Punkt von D stetig ist."

Meine Frage: Sei  nun eine beliebige Folge mit Werten in D (definiert wie oben), die gegen x=2 konvergiert, zum Beispiel ganz einfach [mm] x_{n}=2 [/mm] für alle n.
So wäre f in x=2 doch stetig, oder?

Andere Definitionen von Stetigkeit führen  den Begriff "isoliert", bzw. "nichtisoliert" und "erreichbar" ein und erklären Stetigkeit nur für nichtisolierte Stellen in D. (x=2 wäre im obigen Beispiel eine isolierte Stelle)
Anhand solcher Definitionen wäre die Schwierigkeit an der Stelle x=2 umgangen.

Wer kann mir sagen, inwieweit ich bei der Forsterschen Definition offenbar einen Denkfehler begehe?


        
Bezug
Definition Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Do 08.03.2007
Autor: Hugo_Sanchez-Vicario

Hallo AndyH,

wenn deine Antwort lautet, "f ist stetig", dann ist das richtig. (Du hast es nur nirgends geschrieben.)

Hier kannst du am besten die epsilon-delta-Definition verwenden. In isolierten Punkten des Definitionsbereichs D ist jede Funktion stetig, da man in einem solchen Spezialfall fuer jedes beliebige epsilon als delta den halben Abstand zum naechsten Punkt in D verwenden kann.

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de