www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Linear Mappings" - Definition reeller Vektorraum
Definition reeller Vektorraum < Linear Mappings < Uni-LinA u. Algebra < University < Maths <
View: [ threaded ] | ^ Forum "Lineare Abbildungen"  | ^^ all forums  | ^ Tree of Forums  | materials

Definition reeller Vektorraum: Frage (beantwortet)
Status: (Question) answered Status 
Date: 17:01 Sa 23/04/2016
Author: pc_doctor

Hallo,

ich würde gerne wissen, welche folgenden Formulierungen korrekt zur Definition des Begriffs reeller Vektorraum ergänzt werden kann:

a) Eine Menge V heißt reeller Vektorraum, wenn es zwei Abbildungen +: [mm] \IR [/mm] x V -> V und *: [mm] \IR [/mm] x V -> V gibt, so dass die folgenden acht Axiome efüllt sind(Körperaxiome)

b) Eine Menge von reellen Vektoren heißt reeller Vektorraum, wenn die folgenden acht Axiome erfüllt sind.

c) Ein Tripel (V,+,*) , in dem V eine Menge und + und * Abbildungen V x V -> V bzw. [mm] \IR [/mm] x V -> V sind, heißt reeller Vektorraum, wenn die folgenden acht Axiome erfüllt sind.

Also Antwort b) ist Quatsch.
In der Lösung steht, dass man sich den Unterschied zwische a und c klar machen sollte.

Deshalb hier meine Frage: Ich verstehe den Unterschied zwischen a und c nicht.

Kann mir da jemand weiterhelfen?

Vielen Dank im Voraus


        
Bezug
Definition reeller Vektorraum: Antwort
Status: (Answer) finished Status 
Date: 17:58 Sa 23/04/2016
Author: Ladon

Hallo pc_doctor,

was ist denn der Unterschied zwischen a) und b)?
Es ist wohl die Verknüpfung der Addition:
bei a): [mm] $+:\IR\times V\to [/mm] V$,
bei c): [mm] $+:V\times V\to [/mm] V$.
a) ist quatsch, was man sich an [mm] $V=\IR^3$ [/mm] klar machen kann. Dir ist sicherlich aus der Schule bekannt, dass man die Vektoren in [mm] $\IR^3$ [/mm] komponentenweise addiert und man nicht eine reelle Zahl mit einem Vektor addiert. Wie soll denn die Addition einer reellen Zahl $r$ mit einem Vektor [mm] $(v_1,v_2,v_3)$ [/mm] aussehen? ;-)

VG
Ladon

Bezug
                
Bezug
Definition reeller Vektorraum: Mitteilung
Status: (Statement) No reaction required Status 
Date: 18:11 Sa 23/04/2016
Author: pc_doctor

Hallo,

stimmt, das mit der Verknüpfung habe ich übersehen. Mich haben eher die Begriffe Tripel und Menge verwirrt. Vielen Dank für die Antwort.

Bezug
        
Bezug
Definition reeller Vektorraum: Antwort
Status: (Answer) finished Status 
Date: 18:17 Sa 23/04/2016
Author: tobit09

Hallo pc_doctor!


> a) Eine Menge V heißt reeller Vektorraum, wenn es zwei
> Abbildungen +: [mm]\IR[/mm] x V -> V und *: [mm]\IR[/mm] x V -> V gibt, so
> dass die folgenden acht Axiome efüllt sind(Körperaxiome)


> c) Ein Tripel (V,+,*) , in dem V eine Menge und + und *
> Abbildungen V x V -> V bzw. [mm]\IR[/mm] x V -> V sind, heißt
> reeller Vektorraum, wenn die folgenden acht Axiome erfüllt
> sind.


>  In der Lösung steht, dass man sich den Unterschied
> zwische a und c klar machen sollte.
>
> Deshalb hier meine Frage: Ich verstehe den Unterschied
> zwischen a und c nicht.

Einen Unterschied hat mein Vorredner ja bereits genannt.
Zwei weitere:

1. Bei a) ist am Ende die Rede von den "Körperaxiomen". Hier müssten jedoch die Vektorraumaxiome stehen.

2. Bei a) wird jede Menge V Vektorraum genannt, wenn es irgendwelche Objekte + und * mit gewissen Eigenschaften GIBT. Diese werden im Allgemeinen keineswegs eindeutig sein.
Bei einer ganz sauberen Definition eines Vektorraums müssen jedoch (wie bei c) ) gewisse ("ausgezeichnete") Objekte + und * Bestandteile des Vektorraumes sein.


Viele Grüße
Tobias

Bezug
                
Bezug
Definition reeller Vektorraum: Mitteilung
Status: (Statement) No reaction required Status 
Date: 18:20 Sa 23/04/2016
Author: pc_doctor

Alles klar, vielen Dank für die Antworten, jetzt habe ich den Unterschied gecheckt.

Bezug
View: [ threaded ] | ^ Forum "Lineare Abbildungen"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.vorhilfe.de