www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Definitionsbereich
Definitionsbereich < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 So 09.12.2007
Autor: bunnydeluxe13

Aufgabe
Bestimmen Sie den maximalen Definitionsbereich der Funktion f.

a.) f(x) = 1  b.)f(x) = [mm] 1/p^3 [/mm]  c.) f(x) = [mm] x/(x-2)^3 [/mm]  d.) f(m) = [mm] 4\wurzel{m} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


Eine Hilfe wäre nett =)

Danke im Vorraus,
Lg Eli.

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 So 09.12.2007
Autor: Tyskie84

Hallo

Weisst du was der Definitionsberecih aussagt???

Du nimmst dir einfach den Definitionsbereich der reellen Zahlen [mm] \IR [/mm] und musst dann für deine gegebenen Funktionen wenn nötig einschränkungen machen.

Als Beispiel: [mm] \bruch{1}{x-1} [/mm] Der Definitionsbereich ist: [mm] DB_{f}=\IR [/mm] \ {1} (oder ganz formal aufgeschrieben [mm] DB_{f}= [/mm] {x [mm] \in \IR [/mm]  | x [mm] \not= [/mm] 1})  das bedeutet dass man für x alle reellen Zahlen einsetzten darf bis auf die 1 denn man darf ja durch 0 nicht dividieren. Versuch es mal für deine funktionen :)

Gruß



Bezug
                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 So 09.12.2007
Autor: bunnydeluxe13

Hallo,

also zb jetzt bei

f(x) = [mm] -x^4 [/mm] wäre der Def. Bereich D= R / {0}
oder wie ?!

weil da würde ja rauskommen - 0 ^ 4 = 0 ?!

und wenn ich einsetzen würde zb 2

wäre es - 2 ^4 = - 16 ?!

__________________

oder bei  x / (x - 2 ) ^ 3 was wäre denn da der def. bereich?

Bezug
                        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 So 09.12.2007
Autor: Tyskie84


> Hallo,
>  
> also zb jetzt bei
>
> f(x) = [mm]-x^4[/mm] wäre der Def. Bereich D= R / {0}
> oder wie ?!

NEIN. Da gibt es doch keinen eingeschränkten bereich. du darfst doch alles einseten was du willst also ist [mm] DB_{f}= \IR [/mm]

>


>  
> oder bei  x / (x - 2 ) ^ 3 was wäre denn da der def.
> bereich?

Bei brüchen ist das folgenermaßen. Der Nenner darf NIEMALS null werden also berechne die Nullstellen im Nenner und die Nullstellen die du heraus bekommst darfst du nicht einseten und ist somit dein eingeschränkter definitionsbereich

Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de