www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Definitionsbereich
Definitionsbereich < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:32 So 11.10.2009
Autor: Nils92

Aufgabe
Ich habe nur eine Verständnisfrage

Meine Frage lautet: Beinhaltet das Zeichen (Reelle positive/negative Zahlen), das sind die wo über dem R noch ein + oder - steht, eigentlich auch den Wert/die Zahl 0?

zB.:

f(x)= [mm] \wurzel{\bruch{4}{-x}} [/mm]

Dann is der Definitionsbereich ja alle negativen Zahlen und NICHT Null, da wollte ich wissen ob ich dort schreiben kann Definitionsbereich = alle negativen reelen Zahlen...

??

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 So 11.10.2009
Autor: Marcel

Hallo Nils,

> Ich habe nur eine Verständnisfrage
>  Meine Frage lautet: Beinhaltet das Zeichen (Reelle
> positive/negative Zahlen), das sind die wo über dem R noch
> ein + oder - steht, eigentlich auch den Wert/die Zahl 0?
>
> zB.:
>  
> f(x)= [mm]\wurzel{\bruch{4}{-x}}[/mm]
>  
> Dann is der Definitionsbereich ja alle negativen Zahlen und
> NICHT Null, da wollte ich wissen ob ich dort schreiben kann
> Definitionsbereich = alle negativen reelen Zahlen...
>  
> ??

das ist Vereinbarungssache. Der eine definiert [mm] $\IR^-:=\{r \in \IR: r < 0\},\,$ [/mm] jmd. anderes vll. [mm] $\IR^-:=\{r \in \IR: r \le 0\}\,.$ [/mm]

Jmd. der [mm] $\IR^-:=\{r \in \IR: r < 0\}$ [/mm] benützt, schreibt dann vll. auch [mm] $\IR^-_0:=\{r \in \IR: r \le 0\}\,.$ [/mm]

Ähnliches gilt für die Sprechweise "negative Zahlen". Die einen meinen damit alle reellen Zahlen [mm] $<\,0$, [/mm] andere wiederum alle reellen Zahlen [mm] $\le [/mm] 0$, und sagen für alle reellen Zahlen [mm] $<\,0$ [/mm] dann "echt negative Zahlen".

Ich selbst umgehe das Problem in der Symbolik mit [mm] $\IR^-$ [/mm] meist so, dass ich einfach [mm] $\IR_<:=\{r \in \IR: r < 0\}$ [/mm] und [mm] $\IR_{\le}:=\{r \in \IR: r \le 0\}$ [/mm] schreibe. Ich denke, Du solltest aber am besten nochmal Rücksprache mit Deinem Lehrer halten, ob er [mm] $\IR^-$ [/mm] für [mm] $\IR_{<}$ [/mm] oder [mm] $\IR_{\le}$ [/mm] schreibt, und Dir am besten auch eine Begründung geben lassen, warum er dies so tut, damit Dir das im Gedächtnis bleibt.

Bzgl. [mm] $f(x)=\sqrt{\frac{-4}{x}}$ [/mm] ist der "maximale Definitionsbereich (bzgl. [mm] $\IR$)" [/mm] - was immer man damit nun auch präzise meinen mag; aber es ist intuitiv klar, was gemeint ist - sicher nicht [mm] $\IR_{\le}$, [/mm] sondern in der Tat [mm] $\IR_{<}$, [/mm] also alle reellen Zahlen [mm] $<\,0\,.$ [/mm]

P.S.:
Heuser (Lehrbuch der Analysis, Band 1, 14.Auflage) definiert z.B. [mm] $\IR^+=\{r \in \IR: r > 0\}$ [/mm] und nennt dies die Menge der positiven (reellen) Zahlen. Analog wären dann genau alle (reellen) Zahlen [mm] $<\,0$ [/mm] dann in der Menge [mm] $\IR^-$ [/mm] enthalten, und dies wäre somit (bzgl. [mm] $\IR$) [/mm] der (maximale) Definitionsbereich von [mm] $f(x)=\sqrt{\frac{-4}{x}}\,.$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de