www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Denksportaufgabe
Denksportaufgabe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Denksportaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 So 20.05.2007
Autor: engel

Hallo!

Habe noch eine sehr wichtige Frage. Bitte helft mir!

Philipp möchte herausfinden, welche Steigung der Graph f an der Stelle 0 hat. Er notiert den Term für die mittlere Steigung in [0;x] und berechnet den Grenzwert für x gegen 0. Was hälst du davon?

Könnt ihr mir dazu was sagen?

DANKEE!!1

        
Bezug
Denksportaufgabe: Differentialquotient
Status: (Antwort) fertig Status 
Datum: 21:14 So 20.05.2007
Autor: Loddar

Hallo engel!


Überlege doch mal ... wie ist denn die Ableitung einer Funktion z.B. an der Stelle [mm] $x_0 [/mm] \ = \ 0$ definiert?

Stichwort: MBDifferentialquotient


Also ...? Denn was gibt die Ableitung an?


Gruß
Loddar


Bezug
                
Bezug
Denksportaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 So 20.05.2007
Autor: engel

mm.. keine ahnung? hab mir das dort mal durchgelesen, aber..?

Bezug
                        
Bezug
Denksportaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:30 So 20.05.2007
Autor: engel

ich bin bis zu Wurzel2 / Wurzelx gekommen...

Bezug
                                
Bezug
Denksportaufgabe: Was rechnest Du?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:36 So 20.05.2007
Autor: Loddar

Hallo engel!


[aeh] ??? Was rechnest Du denn da? Diese Aufgabe ist völlig ohne Rechnung zu lösen.


Gruß
Loddar


Bezug
                                        
Bezug
Denksportaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 So 20.05.2007
Autor: engel

habe f(x) - x / x - x0 gerechnet...

meine lehrerien hat auch so gferechnet kam dann auf Wurzel2/Wurzelx und hat dann gemeint es wäre die x-achse oder so irgendwie...

Bezug
                                                
Bezug
Denksportaufgabe: Welche Funktion?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:42 So 20.05.2007
Autor: Loddar

Hallo engel!


Aber mit welcher Funktion(svorschrift) rechnest Du denn? In der Aufgabenstellung ist keine angegeben.


Gruß
Loddar


Bezug
                        
Bezug
Denksportaufgabe: Hinweise
Status: (Antwort) fertig Status 
Datum: 21:41 So 20.05.2007
Autor: Loddar

Hallo engel!


Die Steigung einer Funktion (bzw. die Steigung der entsprechenden Tangente) wird doch angegeben durch die Ableitung der Funktion.

Allgemein ist die Ableitung einer Funktion wie folgt definiert:

$f'(a) \ := \ [mm] \limes_{x\rightarrow a}\bruch{f(x)-f(a)}{x-a}$ [/mm]


Das heißt also konkret für $a \ := \ 0$ :   $f'(0) \ := \ [mm] \limes_{x\rightarrow 0}\bruch{f(x)-f(0)}{x-0}$ [/mm]


Und was gibt denn dieser Bruch an (denk' mal Richtung Steigungsdreieck einer Geraden)?


Und nun nochmal Deine Aufgabenstellung dazu lesen ...


Gruß
Loddar


Bezug
                                
Bezug
Denksportaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:44 So 20.05.2007
Autor: engel

hallo!

tausend mal sorry! habe vergessen f anzugeben.

f(x) = Wurzel2x

deshalb habe ich so gerechnet..

dann muss man auch rechnen oder?

Bezug
                                        
Bezug
Denksportaufgabe: Funktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 So 20.05.2007
Autor: Loddar

Hallo engel!


Meinst Du hier $f(x) \ = \ [mm] \wurzel{2x}$ [/mm] oder doch eher $f(x) \ = \ [mm] \wurzel[2]{x} [/mm] \ = \ [mm] \wurzel{x}$ [/mm] ?


Gruß
Loddar


Bezug
                                                
Bezug
Denksportaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 So 20.05.2007
Autor: engel

$ f(x) \ = \ [mm] \wurzel{2x} [/mm] $

Bezug
                                        
Bezug
Denksportaufgabe: erste Schritte
Status: (Antwort) fertig Status 
Datum: 22:03 So 20.05.2007
Autor: Loddar

Hallo engel!


Ich denke zwar, dass man diese Aufgabe auch allgemein ohne Rechnung lösen kann. Schließlich hast Du diese Aufgabe selber als Denksportaufgabe überschrieben.


Aber es geht auch für diese spezielle Funktion.

$f'(a) \ := \ [mm] \limes_{x\rightarrow a}\bruch{f(x)-f(a)}{x-a} [/mm] \ = \ [mm] \limes_{x\rightarrow a}\bruch{\wurzel{2x}-\wurzel{2a}}{x-a} [/mm] \ = \ [mm] \limes_{x\rightarrow a}\bruch{2*\left( \ \wurzel{2x}-\wurzel{2a} \ \right)}{2*(x-a)} [/mm] \ = \ [mm] 2*\limes_{x\rightarrow a}\bruch{\wurzel{2x}-\wurzel{2a}}{2x-2a} [/mm] \ = \ [mm] 2*\limes_{x\rightarrow a}\bruch{\wurzel{2x}-\wurzel{2a}}{\left( \ \wurzel{2x}-\wurzel{2a} \ \right)*\left( \ \wurzel{2x}+\wurzel{2a} \ \right)} [/mm] \ = \ ...$


Gruß
Loddar


Bezug
                                                
Bezug
Denksportaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:06 So 20.05.2007
Autor: Kroni

Hi,

es geht doch hier im Speziellen um den Grenzwert an der Stelle x=0!

D.h. man braucht das doch nicht so allgemein zu rechnen?

Ich hätte hier den Ansatz [mm] m=\bruch{f(x)-f(0)}{x-0}=\bruch{\wurzel{2}*\wurzel{x}}{x} [/mm]

gewählt...

Und da kommt dann auch schon die Brisanz der Differenzierbarkeit der Wurzelfunktion an der Stelle x=0 zu tage.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de