www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante
Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:05 Mi 05.01.2011
Autor: looney_tune

Aufgabe
Bn=   (2  -2   0  0    .....0 0 0
          -1   2 -1  0......   0 0 0      
           0   -1  2  -1 ..... 0 0 0
                 .                  .
                 .                  .
                 .                   .

            0 0  0 0      ....  2 -1 0
            0 0  0 0       ...  -1 2 -1
            0 0  0 0        ...  0 -1 2  )


Man bestimme detBn für alle n Element N.

Wie kann man denn bei so einer Matrix die Determinante bestimmen, also mit dem Laplaceschen-Entwicklungssatz zum Beispiel, aber wie kann ich denn diesen Satz auf diese Matrix übertragen?

        
Bezug
Determinante: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 05.01.2011
Autor: looney_tune

die genaue Aufgabenstellung lautete eigentlich so:
(1) Man finde mit Hilfe des Laplaceschen Entwicklungssatzes ganze Zahlen r, s derart,
dass detBn = r detBn−1 + s detBn−2 f¨ur alle n  3.
(2) Man bestimme detBn f¨ur alle n 2 N.

Bezug
                
Bezug
Determinante: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mi 05.01.2011
Autor: ullim

Hi,

kannst Du das ganze mal leserlich mit dem Formeleditor schreiben, dann kann man Dir leichter helfen. AUfjeden Fall auch besser, als zu raten was Du meinst.

Bezug
                        
Bezug
Determinante: hey
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 Do 06.01.2011
Autor: looney_tune

ja ich würde zwar sehr gerne damit schreiben, aber ich weiß nicht wie?

Bezug
                
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Mi 05.01.2011
Autor: leduart

Hallo
Da fängt man doch mal mit den kleinsten [mm] B_n [/mm] an und sieht, wie das läuft. dann liegt ja wohl irgendwann - wie oft wenn was mit n geht induktion nahe.
Gruss leduart


Bezug
                
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Fr 07.01.2011
Autor: ullim

Hi,

durch ausrechnen von [mm] det(B_n) [/mm] für n=3,4,5 ergibt sich die Vermutung [mm] det(B_n)=n+1 [/mm]

Das muss man jetzt per Induktion beweisen. Entwickle die Determinante [mm] det(B_{n+1}) [/mm] nach der ersten Zeile, dann erhälst Du

[mm] det(B_{n+1})=2*det(B_n)+Rest [/mm]

Den Rest nochmal nach der ersten Spalte entwickelen ergibt [mm] Rest=-det(B_{n-1}) [/mm] also zusammen

[mm] det(B_{n+1})=2*det(B_n)-det(B_{n-1}) [/mm] mit der IV folgt [mm] det(B_{n+1})=2*(n+1)-n=n+2 [/mm] also ist die Induktionsbehauptung bewiesen und Deine Zhalen r  und s ergeben sich zu r=2 und s=-1



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de