www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinantenabbildung
Determinantenabbildung < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:08 Di 04.03.2014
Autor: Paivren

Hallo zusammen,

habe Verständnisschwierigkeiten bei der Definition der Determinante als Abbildung.

[mm] e_{j,k} [/mm] ist hierbei der Standard-Basisvektor des Raums der quadratischen Matrizen über Körper K.
Also alle Einträge sind 0, außer an Stelle (j,k), da ist eine 1.

Eine "Determinantenabbildung" auf jenem Vektorraum ist eine Abbildung [mm] \delta [/mm] : [mm] Mat_{n}(K) [/mm] --> K mit unter anderem folgender Eigenschaft:

Für jedes i [mm] \in [/mm] {1,...,n} ist [mm] \delta [/mm] linear bezüglich der i-ten Zeile:

[mm] \delta (\summe_{j,k=1}^{n} a_{j,k}e_{j,k} [/mm] + [mm] \summe_{k=1}^{n}( bx_{k} [/mm] + [mm] y_{k})e_{i,k}) [/mm]  

wobei j [mm] \not= [/mm] i und [mm] \summe_{j,k=1}^{n} a_{j,k}e_{j,k}:=A'. [/mm]

= b [mm] \delta [/mm] (A' + [mm] \summe_{k=1}^{n}x_{k}e_{i,k}) [/mm] + [mm] \delta [/mm] (A' + [mm] \summe_{k=1}^{n}y_{k}e_{i,k}) [/mm]

für alle [mm] a_{j,k},b,x_{k},y_{k} \in [/mm] K.


Ich verstehe den letzten Gleichheitsschritt nicht.
Offensichtlich wird hier eine Matrix als Linearkombination der Basisvektoren dargestellt, wobei die i-te Zeite ausgesondert betrachtet wird (rechter Summand).
Es gilt wohl [mm] a_{i,k}=(bx_{k}+y_{k}) [/mm]

Ich würde es verstehen, wenn es so wäre:

[mm] \delta (\summe_{j,k=1}^{n} a_{j,k}e_{j,k} [/mm] + [mm] \summe_{k=1}^{n}( bx_{k} [/mm] + [mm] y_{k})e_{i,k}) [/mm]  
[mm] =\delta [/mm] ( A' + [mm] \summe_{k=1}^{n}( bx_{k} [/mm] + [mm] y_{k})e_{i,k}) [/mm]  
[mm] =\delta [/mm] ( A') + [mm] \delta (\summe_{k=1}^{n}( bx_{k} [/mm] + [mm] y_{k})e_{i,k}) (\delta [/mm] linear)
[mm] =\delta [/mm] ( A') + [mm] \delta (\summe_{k=1}^{n}( bx_{k}e_{i,k} [/mm] + [mm] y_{k}e_{i,k})) [/mm]
[mm] =\delta [/mm] ( A') + [mm] \delta (\summe_{k=1}^{n} bx_{k}e_{i,k}) [/mm] + [mm] \delta (\summe_{k=1}^{n} y_{k}e_{i,k}) [/mm]
[mm] =\delta [/mm] ( A' + [mm] \summe_{k=1}^{n} bx_{k}e_{i,k}) [/mm] + [mm] \delta (\summe_{k=1}^{n} y_{k}e_{i,k}) [/mm]

Aber das ist wohl nicht ganz richtig, da rechts laut Skript noch ein A' stehen muss und links das b komplett rausgezogen werden kann, warum auch immer.

Kann mir das jemand näher erklären, dieses "i-te Zeile linear" kapier ich wohl nicht wirklich.

Gruß


        
Bezug
Determinantenabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Di 04.03.2014
Autor: hippias


> Hallo zusammen,
>  
> habe Verständnisschwierigkeiten bei der Definition der
> Determinante als Abbildung.
>  
> [mm]e_{j,k}[/mm] ist hierbei der Standard-Basisvektor des Raums der
> quadratischen Matrizen über Körper K.
>  Also alle Einträge sind 0, außer an Stelle (j,k), da ist
> eine 1.
>  
> Eine "Determinantenabbildung" auf jenem Vektorraum ist eine
> Abbildung [mm]\delta[/mm] : [mm]Mat_{n}(K)[/mm] --> K mit unter anderem
> folgender Eigenschaft:
>  
> Für jedes i [mm]\in[/mm] {1,...,n} ist [mm]\delta[/mm] linear bezüglich der
> i-ten Zeile:
>  
> [mm]\delta (\summe_{j,k=1}^{n} a_{j,k}e_{j,k}[/mm] +
> [mm]\summe_{k=1}^{n}( bx_{k}[/mm] + [mm]y_{k})e_{i,k})[/mm]  
>
> wobei j [mm]\not=[/mm] i und [mm]\summe_{j,k=1}^{n} a_{j,k}e_{j,k}:=A'.[/mm]
>  
> = b [mm]\delta[/mm] (A' + [mm]\summe_{k=1}^{n}x_{k}e_{i,k})[/mm] + [mm]\delta[/mm] (A'
> + [mm]\summe_{k=1}^{n}y_{k}e_{i,k})[/mm]
>  
> für alle [mm]a_{j,k},b,x_{k},y_{k} \in[/mm] K.
>  
>
> Ich verstehe den letzten Gleichheitsschritt nicht.
>  Offensichtlich wird hier eine Matrix als Linearkombination
> der Basisvektoren dargestellt, wobei die i-te Zeite
> ausgesondert betrachtet wird (rechter Summand).
>  Es gilt wohl [mm]a_{i,k}=(bx_{k}+y_{k})[/mm]

Ja.

>  
> Ich würde es verstehen, wenn es so wäre:
>  
> [mm]\delta (\summe_{j,k=1}^{n} a_{j,k}e_{j,k}[/mm] +
> [mm]\summe_{k=1}^{n}( bx_{k}[/mm] + [mm]y_{k})e_{i,k})[/mm]  
> [mm]=\delta[/mm] ( A' + [mm]\summe_{k=1}^{n}( bx_{k}[/mm] + [mm]y_{k})e_{i,k})[/mm]  
> [mm]=\delta[/mm] ( A') + [mm]\delta (\summe_{k=1}^{n}( bx_{k}[/mm] +
> [mm]y_{k})e_{i,k}) (\delta[/mm] linear)
>  [mm]=\delta[/mm] ( A') + [mm]\delta (\summe_{k=1}^{n}( bx_{k}e_{i,k}[/mm] +
> [mm]y_{k}e_{i,k}))[/mm]
>  [mm]=\delta[/mm] ( A') + [mm]\delta (\summe_{k=1}^{n} bx_{k}e_{i,k})[/mm] +
> [mm]\delta (\summe_{k=1}^{n} y_{k}e_{i,k})[/mm]
>  [mm]=\delta[/mm] ( A' +
> [mm]\summe_{k=1}^{n} bx_{k}e_{i,k})[/mm] + [mm]\delta (\summe_{k=1}^{n} y_{k}e_{i,k})[/mm]
>  
> Aber das ist wohl nicht ganz richtig, da rechts laut Skript
> noch ein A' stehen muss

Das Problem hierbei ist, dass in $A'$ die $i$-te Zeile sozusagen "fehlt"; letztendlich ist diese Linearitaet in Zeilen einfach so definiert. Vielleicht ist folgende Darstellung uebersichtlicher: Es bezeichnen [mm] $Z_{1},\ldots, Z_{n}$ [/mm] die Zeilen der quadr. Matrix $A$, d.h. $A= [mm] (Z_{1},\ldots, Z_{n})$. [/mm] Ist [mm] $Z_{i}= [/mm] X+ bY$, so ist die Linearitaet bezueglich der $i$-ten Zeile definiert als [mm] $\delta(A)= \delta(Z_{1}, \ldots, Z_{i-1}, X+bY,Z_{i+1},\ldots, Z_{n})= \delta(Z_{1}, \ldots, Z_{i-1}, X,Z_{i+1},\ldots, Z_{n})+ b\delta(Z_{1}, \ldots, Z_{i-1}, Y,Z_{i+1},\ldots, Z_{n})$. [/mm]

Deine Variante saehe etwa so aus: [mm] $\delta(A)= \delta(Z_{1}, \ldots, Z_{i-1}, X+bY,Z_{i+1},\ldots, Z_{n})= \delta(Z_{1}, \ldots, Z_{i-1}, X,Z_{i+1},\ldots, Z_{n})+ b\delta(0, \ldots, [/mm] 0, [mm] Y,0,\ldots, [/mm] 0)$. Das ist auch schoen, aber nicht das gewuenschte.


Moechte man also [mm] $\delta$ [/mm] als ein Produkt von $n$ Vektoren auffassen, dass ist dies gerade das Distributivgesetz, das hier beschrieben wird.

> und links das b komplett
> rausgezogen werden kann, warum auch immer.

Das ist Teil der Definition der Linearitaet; sollte Dir bekannt vorkommen.

>  
> Kann mir das jemand näher erklären, dieses "i-te Zeile
> linear" kapier ich wohl nicht wirklich.
>  
> Gruß
>  


Bezug
                
Bezug
Determinantenabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Di 11.03.2014
Autor: Paivren

Hallo,

hatte letztens ganz versäumt, mich zu bedanken.
Danke für die Antwort, habe es nachvollziehen können :)

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de