www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinantenberechnung 5x5
Determinantenberechnung 5x5 < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinantenberechnung 5x5: Korrektur
Status: (Frage) beantwortet Status 
Datum: 01:26 Mi 20.07.2011
Autor: Carlo

Aufgabe
[mm] \pmat{ 1 & 0 & 2 & 1 & 0 \\ 0 & 2 & 0 & -2 & 2 \\ 0 & 1 & -1 & -1 & 0 \\ 1 & 0 & 2 & 2 & 0 \\ 0 & 1 & 2 & -1 & 4 } [/mm]

Hallo,

also ich muss die Determinante berechnen und ich weiß, dass hier -2 herauskommen soll, aber ich bekomme trotz mehrfacher Kontrolle -16 heraus, vielleicht findet ihr ja meinen Fehler :(

= +1det [mm] \pmat{ 2 & 0 & -2 & 2 \\ 1 & -1 & -1 & 0 \\ 0 & 2 & 2 & 0 \\ 1 & 2 & -1 & 4 } [/mm] -1 det [mm] \pmat{ 0 & 2 & 1 & 0 \\ 2 & 0 & -2 & 2 \\ 1 & -1 & -1 & 0 \\ 1 & 2 & -1 & 4 } [/mm]

Sarrus'sche Regel angewendet, Ergebnis -16 -.-*

        
Bezug
Determinantenberechnung 5x5: Antwort
Status: (Antwort) fertig Status 
Datum: 02:27 Mi 20.07.2011
Autor: kushkush

Hallo,


$det  [mm] \pmat{ 1 & 0 & 2 & 1 & 0 \\ 0 & 2 & 0 & -2 & 2 \\ 0 & 1 & -1 & -1 & 0 \\ 1 & 0 & 2 & 2 & 0 \\ 0 & 1 & 2 & -1 & 4 } [/mm]  = det [mm] \pmat{ 2 & 0 & -2 & 2 \\ 1 & -1 & -1 & 0 \\ 0 & 2 & 2 & 0 \\ 1 & 2 & -1 & 4 } [/mm] - det  [mm] \pmat{ 0 & 2 & 1 & 0 \\ 2 & 0 & -2 & 2 \\ 1 & -1 & -1 & 0 \\ 1 & 2 & -1 & 4 } [/mm] $


OK.


> Sarrus

Nein, wenn du ihn gleich angewendet hast wie bei 3x3 und 2x2 Matrizen; ja wenn du das Schema mit der Leibniz Formel hergeleitet hat.

Rechne vor!


Gruss
kushkush

Bezug
                
Bezug
Determinantenberechnung 5x5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Mi 20.07.2011
Autor: Carlo

Ab wann darf ich denn diese Sarrus Regel benutzen ? Muss ich denn jetzt nochmal Laplace verwerwenden ?

Bezug
                        
Bezug
Determinantenberechnung 5x5: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:09 Mi 20.07.2011
Autor: Stoecki

ich kenne die sarrus'sche regel nur auf 3x3 matrizen. bei den beiden 4x4 hätte ich entweder noch mal laplace angewendet oder man kann das auch von anfang an effizient mittels gauß-verfahren berechnen, wobei das relativ fehleranfällig ist, da man sich alle multiplikatoren merken muss, mit denen man skaliert

Bezug
                        
Bezug
Determinantenberechnung 5x5: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mi 20.07.2011
Autor: notinX

Hallo,

> Ab wann darf ich denn diese Sarrus Regel benutzen ? Muss

die Regel von Sarrus gilt ausschließlich für 3x3-Matrizen.

> ich denn jetzt nochmal Laplace verwerwenden ?  

Laplace kannst Du immer anwenden.

Gruß,

notinX

Bezug
                                
Bezug
Determinantenberechnung 5x5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:18 Mi 20.07.2011
Autor: Carlo

Jetzt habe ich nochmal Laplace angwendet und komme für die erste Matrix auf:

2 det [mm] \pmat{ -1 & -1 & 0 & 1 & -1 \\ 2 & 2 & 0 & 0 & 2 \\ 2 & -1 & 4 & 1 & 2 } [/mm]
- 1 det [mm] \pmat{ 0 & -2 & 2 & 2 & 0 \\ 2 & 2 & 0 & 0 & 2 \\ 2 & -1 & 4 & 1 & 2 } [/mm]
-1 det [mm] \pmat{ 0 & -2 & 2 & 2 & 0 \\ -1 & -1 & 0 & 1 & -1 \\ 2 & 2 & 0 & 0 & 2 } [/mm]


Muss ich das gleich auch für die 2. Matrix machen ? Das hat ja iwie kein Ende :( oder mache ich wieder etwas falsch ? :(

Bezug
                                        
Bezug
Determinantenberechnung 5x5: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Mi 20.07.2011
Autor: reverend

Hallo Carlo,


> Jetzt habe ich nochmal Laplace angwendet und komme für die
> erste Matrix auf:
>  
> 2 det [mm]\pmat{ -1 & -1 & 0 & 1 & -1 \\ 2 & 2 & 0 & 0 & 2 \\ 2 & -1 & 4 & 1 & 2 }[/mm]
>  
>  - 1 det [mm]\pmat{ 0 & -2 & 2 & 2 & 0 \\ 2 & 2 & 0 & 0 & 2 \\ 2 & -1 & 4 & 1 & 2 }[/mm]
>  
> -1 det [mm]\pmat{ 0 & -2 & 2 & 2 & 0 \\ -1 & -1 & 0 & 1 & -1 \\ 2 & 2 & 0 & 0 & 2 }[/mm]

Das verstehe ich nicht.
Wenn Du die letzten zwei Spalten streichst, stimmts aber.
Du hast nach der ersten Spalte entwickelt.
Es wäre übrigens nett, wenn Du das einfach angibst, dann ist es leichter nachzuvollziehen.
Etwas Arbeit hättest Du gespart, wenn Du nach der letzten Spalte entwickelt hättest. Es lohnt sich immer, danach zu schauen, wo die meisten Nullen stehen. ;-)

> Muss ich das gleich auch für die 2. Matrix machen ? Das
> hat ja iwie kein Ende :( oder mache ich wieder etwas falsch
> ? :(

Ja, das musst du auch noch für die 2. Matrix machen. Und es hat dann ganz schnell ein Ende.
Die Determinante einer 5x5-Matrix ist halt schon ein ziemlicher Brocken. Wenn die Matrizen größer werden, rechnet man sowieso besser sowieso nicht mehr von Hand. Es geht hier ja vor allem darum, dass Du lernst, wie man die Determinante korrekt bestimmt.

Grüße
reverend


Bezug
                                                
Bezug
Determinantenberechnung 5x5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 20.07.2011
Autor: Carlo

Ich komme trotz allem nicht auf -2 :(

Ich habe alles von vorne gemacht und habe jetzt das hier stehen :

1.Matrix = -2det [mm] \pmat{ 1 & -1 & -1 \\ 0 & 2 & 2 \\ 1 & 2 & -1} [/mm] + 4 det [mm] \pmat{ 2 & 0 & -2 \\ 1 & -1 & -1 \\ 0 & 2 & 2 } [/mm]

2. Matrix= 2 det [mm] \pmat{ 0 & 2 & 1 \\ 1 & -1 & -1 \\ 1 & 2 & -1 } [/mm] + 4 det [mm] \pmat{ 0 & 2 & 1 \\ 2 & 0 & -2 \\ 1 & -1 & -1 } [/mm]

Nun habe ich die Sarrusche Regel angwendet:

1. Matrix = -4-16 =-20

2. Matrix = -2-40 = -42

1*(-20)-1*(-42) = 22

Was mache ich denn verdammt nochmal falsch ? :(

Bezug
                                                        
Bezug
Determinantenberechnung 5x5: Antwort
Status: (Antwort) fertig Status 
Datum: 10:39 Mi 20.07.2011
Autor: reverend

Hallo nochmal,

> Ich komme trotz allem nicht auf -2 :(
>  
> Ich habe alles von vorne gemacht und habe jetzt das hier
> stehen :
>  
> 1.Matrix = -2det [mm]\pmat{ 1 & -1 & -1 \\ 0 & 2 & 2 \\ 1 & 2 & -1}[/mm]
> + 4 det [mm]\pmat{ 2 & 0 & -2 \\ 1 & -1 & -1 \\ 0 & 2 & 2 }[/mm]
>  
> 2. Matrix= 2 det [mm]\pmat{ 0 & 2 & 1 \\ 1 & -1 & -1 \\ 1 & 2 & -1 }[/mm]
> + 4 det [mm]\pmat{ 0 & 2 & 1 \\ 2 & 0 & -2 \\ 1 & -1 & -1 }[/mm]

Bis hierhin stimmt jetzt alles.

> Nun habe ich die Sarrusche Regel angwendet:
>  
> 1. Matrix = -4-16 =-20

Das stimmt nicht. Rechne die erste 3x3-Determinante nochmal.

> 2. Matrix = -2-40 = -42

Das stimmt auch nicht. Beide nicht.

> 1*(-20)-1*(-42) = 22
>  
> Was mache ich denn verdammt nochmal falsch ? :(  

Keine Ahnung. Wahrscheinlich wendest Du die []Regel von Sarrus falsch an. Rechne doch wenigstens mal eine 3x3-Determinante vor, vielleicht finden wirs dann.

Grüße
reverend


Bezug
                                                                
Bezug
Determinantenberechnung 5x5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Mi 20.07.2011
Autor: Carlo

-2det [mm] \vmat{ 1 & -1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 0 & 2 \\ 1 & 2 & -1 & 1 & 2 } [/mm]

+ 4 det [mm] \vmat{ 2 & 0 & -2 & 2 & 0 \\ 1 & -1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 0 & 2 } [/mm]


So sieht die Umformung für die 1. Matrix aus (nach Sarrus).
Jetzt rechne ich :

= -2 ((1*2*(-1) + (-1)*2*1 + (-1)*0*2) - (-1*2*1-1*2*2-(-1)*0*(-1))) + 4*((2*(-1)*2+0*(-1)*0+(-2)*1*2)-(-2)*(-1)*0-2*(-1)*2-0*1*2))

= -20


Wäre es vielleicht doch einfacher, wenn ich das mit Gauß ausrechne, denn dann müsste ich doch die Dreicksmatrix erreichen und dann einfach die Hauptdiagonale mutliplizieren. Ich werde morgen meine Prüfung schreiben und scheitere schon bei so einer einfachen Aufgabe :(

Bezug
                                                                        
Bezug
Determinantenberechnung 5x5: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Mi 20.07.2011
Autor: reverend

Hallo Carlo,

es ist nur Kleinkram, aber der zerhaut Dir halt dann das Ergebnis.


> -2det [mm]\vmat{ 1 & -1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 0 & 2 \\ 1 & 2 & -1 & 1 & 2 }[/mm]
>  
> + 4 det [mm]\vmat{ 2 & 0 & -2 & 2 & 0 \\ 1 & -1 & -1 & 1 & -1 \\ 0 & 2 & 2 & 0 & 2 }[/mm]
>  
> So sieht die Umformung für die 1. Matrix aus (nach
> Sarrus).

Wenn Du im Wikipedia-Artikel genau hinschaust, setzt man die Determinantenstriche trotzdem nach der dritten Spalte. Das ist auch nötig. Im Moment wüsste ich aber nicht, wie man das hier mit LaTeX darstellt. Geht aber bestimmt irgendwie...

Die meisten Assis (und Profs) sehen es außerdem irgendwie nicht gern, wenn man die Spaltenverdopplung schriftlich ausführt (im Kopf macht man sie ja trotzdem), aber das ist jedenfalls hier auch nicht das Problem der Rechnung.

>  Jetzt rechne ich :
>  
> = -2 ((1*2*(-1) + (-1)*2*1 + (-1)*0*2) -
> (-1*2*1-1*2*2-(-1)*0*(-1))) +

Die beiden roten Minus sind falsch, weil Du ja schon eines vor der Klammer hast (blau eingefärbt)!

> 4*((2*(-1)*2+0*(-1)*0+(-2)*1*2)-(-2)*(-1)*0-2*(-1)*2-0*1*2))

Hier dagegen stimmts. Da hast Du einfach alle Diagonalen von rechts oben nach links unten negativ genommen. So ist es richtig. Oben wars "doppelt gemoppelt".

> = -20

Dann kommt (-2)*(-6)+4*(-4)=-4 heraus.

> Wäre es vielleicht doch einfacher, wenn ich das mit Gauß
> ausrechne, denn dann müsste ich doch die Dreicksmatrix
> erreichen und dann einfach die Hauptdiagonale
> mutliplizieren. Ich werde morgen meine Prüfung schreiben
> und scheitere schon bei so einer einfachen Aufgabe :(

Na, Hauptsache Du findest einen Weg für Dich, der so wenig fehleranfällig wie möglich ist.

Zum Kontrollieren gibt es übrigens []hier ein praktisches Javascript-Applet, das Determinanten berechnet.

Grüße
reverend


Bezug
                                                                                
Bezug
Determinantenberechnung 5x5: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Mi 20.07.2011
Autor: Carlo

Hallo reverend :)

>
> Dann kommt (-2)*(-6)+4*(-4)=-4 heraus.


Vielen Dank für Deine Hilfe :-)

Ich komme aber auf -2*(-4-6) + 4(-8+4) = 4 :S  



Fehler gefunden :-)

-2*(-6)+4(-4) = -4

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de