www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Dgl
Dgl < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Fr 07.08.2009
Autor: Phecda

hallo
ich hab hier eine dgl zu lösen, wo ich paar probleme habe:

[mm] (-a^2 [/mm] - [mm] b^2 [/mm] + [mm] \bruch{\partial^2}{\partial z^2})\Phi [/mm] = [mm] c*\delta(z) [/mm]

okay für z [mm] \not= [/mm] 0 kann ich [mm] \Phi \sim e^{-\wurzel{a^2+b^2}|z|} [/mm] ansetzen.
Anschließend würde ich das ganze integrieren über z integrieren über die ganze Zahlengerade, auf der rechten Seite steht dann nur c. Was habe ich dann auf der linken Seite, ich bekomm da irgendwie Null?
Was mach ich falsch, bzw. wie kann ich die gleichung lösen?
lg & danke

        
Bezug
Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Sa 08.08.2009
Autor: leduart

Hallo
1. homogene Dgl loesen, Acosh(kx)+Bsinh(kx) [mm] k=a^2+b^2 [/mm]
jetzt suchst du ne stetige fkt, mit Sprungstelle der ableitung bei 0
also integriere von [mm] -\epsilon [/mm] bis [mm] +\epsilon, [/mm] dann lim [mm] \epsilon [/mm] gegen 0
das integral [mm] ueber\Phi [/mm] verschwindet, wiel [mm] \Phi [/mm] stetig vors. du bekommst einen Zusammenhang zw [mm] \Phi'(0+) [/mm] und [mm] \Phi'(0-) [/mm]
daraus bestimmst du A und B fuer neg, und pos x.
(was deine loesung mit |x| im Exp. sein soll versteh ich nicht.)
Gruss leduart

Bezug
                
Bezug
Dgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 10.08.2009
Autor: Phecda

hallo
okay danke für die erklärungen, hab auch folgenden zusammenhang:
[mm] \limes_{\varepsilon\rightarrow 0} [\Psi'(\varepsilon)-\Psi'(-\varepsilon)]= 4\pi G\sigma(x,y,0) [/mm]

mit [mm] \Psi(x,y,z) [/mm] = A(x,y)sinh(kz) + B(x,y)cosh(kz)
wenn ich nun meine Lösung in die Nebenbedingung einsetze erhalte ich: [mm] \sigma(x,y,0)=0 [/mm]
(Was wegen dem physikalischen Hintergrund nicht sein kann)

Diese Dgl hat mein Prof gelöst, sein Skript ist mir jedoch an einigen Stellen unverständlich:

er schreibt eben: [mm] \Phi \sim e^{-\wurzel{a^2+b^2}|z|} [/mm] und
[mm] \integral_{\infty}^{-\infty}{[...] dz}= 2\bruch{\partial\Phi}{\partial z}|_z_=_+_0 [/mm] = [mm] 4\pi G\sigma =-2\wurzel{a^2+b^2}\Phi [/mm]

Was will er damit aussagen? ich versteh einfach beide Schritte nicht. Auch wenn ich die linke Seite meiner DGL integriere bekomm ich nicht [mm] -2\wurzel{a^2+b^2}\Phi [/mm]
Könnt Ihr mir hier bei der Entschlüsselung etwas helfen?
danke

Bezug
                        
Bezug
Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Mo 10.08.2009
Autor: leduart

Hsllo
Ich versteh dein G und dein /siga nicht. auch nicht deine Loesung. da die fkt bei 0 ja einen Sprung bei der Ableitung macht musst du fuer z<0 und z>0 verschieden A ansetzen. und dann aus Stetigkeit und Sprung  A,B links und A,B rechts angleichen.
wegen der Stet. muss B_-=B_+ sein, A_- und A_+ dagegen veschieden.
Den GW /epsilon gege 0 kannst du nicht so machen, weil du ja links und rechtseitigen GW getrennt ausrechnen musst.
also /Phi'_{0+}/ne/Phi'_{0-}
dein Prof rechnet nicht mit sinh und cosh , was ich einfacher find, sondern mit [mm] A*e^{-kz}+B*e^{kz} [/mm] und fasst das dann so zusammen. rechne  einfach die Sache mit dem Ansatz durch, oder rechne sinh und cosh am Ende um.
Gruss leduart

Bezug
        
Bezug
Dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 So 09.08.2009
Autor: Kroni

Hi,

man kann solche DGLs doch eigentlich auch recht gut mit der Fouriertrafo loesen. Dazu braucht man dann nur das wissen, wie sich die FT einer Ableitung berechnen laesst, und wie die FT der Dirac-Funktion ausschaut. Mit etwas glueck kann man dann auch die Ruecktrafo ausrechnen, und hat das Ergebnis direkt dort stehen nach der Ruecktrafo, ohne irgendwelche komplizierten Umwege gehen zu muessen.

LG,

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de