www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Diagonalen Viereck
Diagonalen Viereck < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalen Viereck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:00 Mi 09.05.2007
Autor: itse

Aufgabe
Die Punkte R (9/3/4), S(10/-4/0), T(3/5/0) und U(4/8/3) bilden ein Viereck. Prüfen Sie, ob sich die Diagonalen des Vierecks schneiden. Berechnen Sie den Schnittpunkt, falls er existiert.

hallo,

bräuchte bei der Aufgabe einen kleinen Denkanstoß, wie komme ich auf die zwei Geradengleichungen für die Diagonalen?

        
Bezug
Diagonalen Viereck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:05 Mi 09.05.2007
Autor: musicandi88

Hallo,

2 Punkte definieren ja bekanntlich eine Gerade..

R und T definieren die eine Diagonale..
S und U definieren die andere Diagonale..

(vorausgesetzt die Punkte snd so angeodrnet wie ich mir das denke...:-))

Wie folgt kommst du zu der Geradengleichung:

Nimm den Ortsvektor eines der beiden Punkte als Stützvektor der Geraden. Den Vektor zwischen den beiden Punkten (Differenz beider Ortsvektoren) ist den Richtungvektor.

Wenn noch Fragen sind, einfach genauer fragen.

Liebe Grüße
Andreas

Bezug
                
Bezug
Diagonalen Viereck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Mi 09.05.2007
Autor: itse

Hallo zusammen,

hier meine Lösung, passt das so?

T-R = [mm] $\begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} [/mm] - [mm] \begin{pmatrix} 9 \\ 3 \\ 4 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} -6 \\ 2 \\ -4 \end{pmatrix}$ [/mm]

U-S = [mm] $\begin{pmatrix} 4 \\ 8 \\ 3 \end{pmatrix} [/mm] - [mm] \begin{pmatrix} 10 \\ -4 \\ 0 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} -6 \\ 12 \\ 3 \end{pmatrix}$ [/mm]


[mm] $g_1$: $\vec [/mm] x = [mm] \begin{pmatrix} 9 \\ 3 \\ 4 \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} -6 \\ 2 \\ -4 \end{pmatrix}$ [/mm]

[mm] $g_2$: $\vec [/mm] x = [mm] \begin{pmatrix} 10 \\ -4 \\ 0 \end{pmatrix} [/mm] + [mm] \lambda \begin{pmatrix} -6 \\ 12 \\ 3 \end{pmatrix}$ [/mm]


1: 9 - 6 [mm] $\lambda$ [/mm] = 10 -6 [mm] $\kappa$ [/mm]
2: 3 + 2 [mm] $\lambda$ [/mm] =-4 + 12 [mm] $\kappa$ [/mm]
3: 4 - 4 [mm] $\lambda$ [/mm] = 0 + 3 [mm] $\kappa$ [/mm]

1 * 2: 18 - 12 [mm] $\lambda$ [/mm] = 20 - 12 [mm] $\kappa$ [/mm] 1a

1a + 2: 21 - 10 [mm] $\lambda$ [/mm] = 16
                [mm] $\lambda$ [/mm] = 0,5 2a


2a in 1: 9 - 6 * 0,5 = 10 - 6 [mm] $\kappa$ [/mm]
                 2/3 = [mm] $\kappa$ [/mm]

[mm] $\lambda$ [/mm] = 0,5, 2/3 = [mm] $\kappa$ [/mm] in 3: 4 - 4 * 0,5 = 3 * 2/3
                                             2 = 6/3
                                             2 = 2

9 + 0,5 *(-6) = 6
3 + 0,5 * 2   = 4
4 + 0,5 *(-4) = 2

Der Schnittpunkt der Diagonalen liegt bei [mm] $\begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$. [/mm]

Bezug
                        
Bezug
Diagonalen Viereck: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Mi 09.05.2007
Autor: engelchen87

dein ergebnis ist richtig...

hab die aufgabe selber gerechnet als Übung und dann mit deinem verglichen.

Also alles supi :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de