www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Diagonalisierbar
Diagonalisierbar < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbar: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:32 Do 29.03.2007
Autor: Willkommen

Hallo zusammen,

oh ja, mir kommen irgendwie immer neue Fragen bzw. Unklarheiten im Umfeld von Matrizen auf: :-O


Bezüglich der Diagonalisierbarkeit von Matrizen kann man sich fragen:

1.)  Wann ist A diagonalisierbar?
2.)  Wann ist A orthogonal diagonalisierbar?
3.)  Wann ist A unitär diagonalisierbar?


Zu 1.) gilt ja das Allgemeine: A ist diagonalisierbar $ [mm] \gdw \exists T^{-1} [/mm] $ mit $ [mm] T^{-1} [/mm] $ A T = Diag  $ [mm] \gdw [/mm] $  A besitzt n linear unabhängige Eigenvektoren (EV).

Wann trifft 2. + 3. zu, welche Voraussetzung müssen gelten / was für Folgerungen ergeben sich daraus? Auf jeden Fall sind wir ja bei 2. im Reellen und bei 3. im Komplexen, aber dann?

Danke und Grüße,
Willkommen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diagonalisierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:42 Fr 30.03.2007
Autor: Willkommen

Hallo,

vielleicht ist mir über Nacht eine teilweise Erklärung gekommen:

Grundsätzlich gilt:

A ist diagonalisierbar $ [mm] \gdw \exists T^{-1} [/mm] $ mit $ [mm] T^{-1} [/mm] $ A T = Diag  $ [mm] \gdw [/mm] $  A besitzt n linear unabhängige Eigenvektoren (EV).

Nun ist es "relativ" aufwendig, eine Matrix zu invertieren. Da wir wissen, dass im Komplexen [mm] A^{-1}=\overline{A}^{t} [/mm] gilt, basteln wir uns über die bei hermiteschen Matrizen senkrecht stehenden EV ein unitäres U, von welchem sich einfach das INverse bilden lässt.

Das heisst: A ist unitär diagonalisierbar [mm] \gdw [/mm] A ist hermitesch


Was meint ihr, liege ich richtig? Wie sieht es mit orthogonaler diagbarkeit aus?

Grüße,
Willkommen

Bezug
        
Bezug
Diagonalisierbar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Mo 02.04.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de