www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Diagonalisierbarkeit
Diagonalisierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Di 10.11.2009
Autor: ms2008de

Aufgabe
Untersuchen Sie, ob die lineare Abbildung [mm] \alpha: \IR^3 \to \IR^3 [/mm] mit [mm] \alpha \vektor{x_{1} \\ x_{2} \\ x_{3}}= \pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}\vektor{x_{1} \\ x_{2} \\ x_{3}} [/mm] diagonalisierbar ist.

Hallo,

Also zunächst mal ist die Darstellungsmatrix A bzgl. der Standardbasis ja einfach A:= [mm] \pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}. [/mm]
So nun hab ich über det(A- [mm] \lambda*E_{3})= [/mm] 0 die Eigenwerte berechnet und kam auf [mm] (-1)(\lambda +2)^2 (\lambda [/mm] -4) =0. Woraus folgt, dass [mm] \lambda_{1} [/mm] =-2 Eigenwert mit algebraischer Vielfachheit 2 ist und [mm] \lambda_{2} [/mm] = 4 Eigenwert mit algebraischer Vielfachheit 1 ist.
Nun muss laut Vorlesung die Summe der algebraischen Vielfachheiten der Eigenwerte gleich der Dimension des [mm] \IR^3 [/mm] entsprechen, also offensichtlich 3 und da es das tut, ist die Abbildung diagonalisierbar.

Stimmt das soweit?
Vielen Dank für eure Hilfe schon im voraus.

Viele Grüße

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Di 10.11.2009
Autor: angela.h.b.


> Untersuchen Sie, ob die lineare Abbildung [mm]\alpha: \IR^3 \to \IR^3[/mm]
> mit [mm]\alpha \vektor{x_{1} \\ x_{2} \\ x_{3}}= \pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}\vektor{x_{1} \\ x_{2} \\ x_{3}}[/mm]
> diagonalisierbar ist.
>  Hallo,
>  
> Also zunächst mal ist die Darstellungsmatrix A bzgl. der
> Standardbasis ja einfach A:= [mm]\pmat{ -3 & 1 &-1 \\ -7 & 5 & -1 \\ -6 & 6 & -2}.[/mm]
>  
> So nun hab ich über det(A- [mm]\lambda*E_{3})=[/mm] 0 die
> Eigenwerte berechnet und kam auf [mm](-1)(\lambda +2)^2 (\lambda[/mm]
> -4) =0. Woraus folgt, dass [mm]\lambda_{1}[/mm] =-2 Eigenwert mit
> algebraischer Vielfachheit 2 ist und [mm]\lambda_{2}[/mm] = 4
> Eigenwert mit algebraischer Vielfachheit 1 ist.
>  Nun muss laut Vorlesung die Summe der algebraischen
> Vielfachheiten der Eigenwerte gleich der Dimension des
> [mm]\IR^3[/mm] entsprechen,
>  also offensichtlich 3 und da es das tut,
> ist die Abbildung diagonalisierbar.
>  
> Stimmt das soweit?

Nein.

Für die Diagonalisierbarkeit muß die Summe der geometrischen Vielfachheiten auch =3 sein, dh. man braucht 3 linear unabhängige Eigenvektoren, was Du bisher noch nicht ausgerechnet hast.

Gruß v. Angela

>  Vielen Dank für eure Hilfe schon im voraus.
>  
> Viele Grüße


Bezug
                
Bezug
Diagonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 10.11.2009
Autor: ms2008de

Danke nochmals,  
> Für die Diagonalisierbarkeit muß die Summe der
> geometrischen Vielfachheiten auch =3 sein, dh. man braucht
> 3 linear unabhängige Eigenvektoren, was Du bisher noch
> nicht ausgerechnet hast.

Sorry, hatte verdrängt, dass wir gesagt haben: eine Matrix A [mm] \in K^{n x n} [/mm] ist genau dann diagonalisierbar, wenn die Summe der algebraischen Vielfachheiten =n ist, UND die algebraische Vielfachheit des Eigenwerts [mm] \lambda_{i} [/mm] gleich der geometrischen Vielfachheit vom Eigenwert [mm] \lambda_{i} [/mm] ist, wobei i= 1,...,s.
Somit komm ich nun beim Eigenwert -2 auf die geometrische Vielfachheit 1, während die algebraische Vielfachheit 2 ist, woraus folgt, dass A nicht diagonalisierbar ist.

Viele Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de