www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Diagonalisierbarkeit
Diagonalisierbarkeit < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Sa 05.06.2010
Autor: Ayame

Aufgabe
Sei A eine 2x2 Matrix mit Elementen aus [mm] \IR. [/mm] Man zeige :

(i) A ist diagonalisierbar ,falls [mm] (SpurA)^{2} [/mm] > 4Det(A)
(ii) A ist trigonalisierbar g.d.w. [mm] (SpurA)^{2} \ge [/mm] 4Det(A)
(iii) A ist trigonalisierbar aber nicht diagonalisierbar g.d.w. [mm] (SpurA)^{2}=4Det(A) [/mm] und A nicht Diagonalmatrix ist.

A:= [mm] \pmat{ a & b \\ c & d } [/mm]

(i) A soll diagonalisierbar sein wenn gilt : [mm] (a+d)^{2} [/mm] > 4(ad - bc) [mm] \Rightarrow a^{2}+d^{2} [/mm] > 2ad - 4bc

Irgendwie ist das quatsch.
Ich weiß einfach nicht wo ich ansetzen soll.
Soll ich hier am besten eine Fallunterscheindung machen?

Wo leigt genau der Zusammenhang zwischen Diagonalisierbarkeit (wann zerfällt etwas in Linearfaktoren , wann sind die geometrische Vielfachkeit gleich der algebraischen?) und der Gleichung ?

Könnte mir jemand einen Tipp geben ?

        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Sa 05.06.2010
Autor: steppenhahn

Hallo!

> Sei A eine 2x2 Matrix mit Elementen aus [mm]\IR.[/mm] Man zeige :
>
> (i) A ist diagonalisierbar ,falls [mm](SpurA)^{2}[/mm] > 4Det(A)
>  (ii) A ist trigonalisierbar g.d.w. [mm](SpurA)^{2} \ge[/mm]
> 4Det(A)
>  (iii) A ist trigonalisierbar aber nicht diagonalisierbar
> g.d.w. [mm](SpurA)^{2}=4Det(A)[/mm] und A nicht Diagonalmatrix ist.
>  A:= [mm]\pmat{ a & b \\ c & d }[/mm]

Du musst gar nicht auf die Ebene von a,b,c,d herunter.
Dir sollte die folgende Formel für das charakteristische Polynom für 2x2-Matrizen (oder im Allgemeineren Fall) mal untergekommen sein:

[mm] $X_{A}^{char}(t) [/mm] = [mm] t^{2}-spur(A)*t+det(A)$. [/mm]

([]Aus Wikipedia)

> Wo leigt genau der Zusammenhang zwischen
> Diagonalisierbarkeit (wann zerfällt etwas in
> Linearfaktoren , wann sind die geometrische Vielfachkeit
> gleich der algebraischen?) und der Gleichung ?

Wende die quadratische Lösungsformel auf das charakteristische Polynom an.

Wenn es zwei reelle, verschiedene Lösungen gibt, so gibt es zwei verschiedene Eigenwerte, also zwei verschiedene Eigenräume mit jeweils Dimension 1. Daraus folgt Diagonalisierbarkeit.
Wenn es zwei reelle Lösungen gibt, so zerfällt das charakteristische Polynom in Linearfaktoren. Daraus folgt Trigonalisierbarkeit.

Grüße,
Stefan

Bezug
                
Bezug
Diagonalisierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 Sa 05.06.2010
Autor: Ayame

Darf ich denn die pq-Formel benutzen ?

Ich brauche ja 2 verschiedenen Nullstellen [mm] \Rightarrow [/mm] 2 Eigenwerte.

Wie du schon sagstes sieht das charakt. Polynom einer 2x2 Matrix wie folgt aus :

c.p.= [mm] t^{2}- [/mm] SpurA*t + detA

Also kann ich mit der pq-Formel die 2 Nullstellen ermitteln

0 = -  [mm] \bruch{SpurA}{2} [/mm] +/- [mm] \wurzel{(\bruch{SpurA}{2})^{2} - detA} [/mm]

[mm] \Rightarrow \wurzel{(\bruch{SpurA}{2})^{2} - detA} [/mm] > 0 für mehrer Nullstellen
[mm] \Rightarrow (\bruch{SpurA}{2})^{2} [/mm] - detA > 0 [mm] \Rightarrow \bruch{SpurA^{2}}{4} [/mm] > detA
[mm] \Rightarrow SpurA^{2} [/mm] > 4detA

Damit stimmt meine Aussage.

Aus den gleichen weg würde ich dann (ii) und (iii) erklären.

Darf ich das aber so machen ?

Bezug
                        
Bezug
Diagonalisierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Sa 05.06.2010
Autor: steppenhahn

Hallo,

> Darf ich denn die pq-Formel benutzen ?

Natürlich! Es geht doch hier um ein Polynom in t!

> Ich brauche ja 2 verschiedenen Nullstellen [mm]\Rightarrow[/mm] 2
> Eigenwerte.
>  
> Wie du schon sagstes sieht das charakt. Polynom einer 2x2
> Matrix wie folgt aus :
>
> c.p.= [mm]t^{2}-[/mm] SpurA*t + detA
>  
> Also kann ich mit der pq-Formel die 2 Nullstellen
> ermitteln
>  
> 0 = -  [mm]\bruch{SpurA}{2}[/mm] +/- [mm]\wurzel{(\bruch{SpurA}{2})^{2} - detA}[/mm]
>  
> [mm]\Rightarrow \wurzel{(\bruch{SpurA}{2})^{2} - detA}[/mm] > 0 für
> mehrer Nullstellen

Das ist nicht ganz okay. Du meinst: Es muss [mm] $(\bruch{SpurA}{2})^{2} [/mm] - detA [mm] \ge [/mm] 0$ sein, damit überhaupt Nullstellen existieren. (Die Wurzel ist immer > 0, die Aussage ist also nicht förderlich).

> [mm]\Rightarrow (\bruch{SpurA}{2})^{2}[/mm] - detA > 0 [mm]\Rightarrow \bruch{SpurA^{2}}{4}[/mm]
> > detA

>  [mm]\Rightarrow SpurA^{2}[/mm] > 4detA

  

> Damit stimmt meine Aussage.

Genau!

> Aus den gleichen weg würde ich dann (ii) und (iii)
> erklären.
>
> Darf ich das aber so machen ?

Ja. [ok]

Grüße,
Stefan

Bezug
                                
Bezug
Diagonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Sa 05.06.2010
Autor: Ayame

Jaaah :)
Super, Danke schön für deine Hilfe.

Wünsch dir noch ein schönes Wochenende.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de