www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik-Sonstiges" - Dichtefunktion
Dichtefunktion < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtefunktion: Korrektur und Tipps
Status: (Frage) überfällig Status 
Datum: 14:48 Mo 14.04.2008
Autor: jkwon

Aufgabe
Telefondauer-Aufgabe
Die Längen von Telefongesprächen lassen sich als Funktionswerte einer Zufallsvariablen X auffassen. X soll
so festgelegt sein, dass 5 Minuten als eine Zeiteinheit dient. Die Dichtefunktion wird durch die Funktion
d(x) = 4x · e−2x , x >= 0, approximiert.
a) Zeigen Sie, dass d(x) den Bedingungen einer Dichtefunktion genügt. Bestimmen Sie die zugehörige
Verteilungsfunktion D(x) .
b) Wie viel Prozent aller Gespräche sind länger bzw. kürzer als μ (Erwartungswert) Zeiteinheiten?
Berechnen Sie, wie viel Prozent aller Gespräche in den Intervallen [μ − Standardabweichung; μ] und [μ; μ + Standardabweichung] liegen,
wobei Sigma die Standardabweichung ist.
c) Berechnen Sie die Stelle xM, an der d(x) ein Maximum besitzt. Vergleichen Sie xM und μ und begründen Sie den Unterschied.

Hallo Leute!

Ich schreibe am Donnerstag Mathe Abi, habe mich mit der Aufgabe beschäftigt. Habe folgende Lösungen:

1a) d(x) ist eine Dichtefunktion weil für x>= 0 d(x)>= 0 ist. Außerdem ist die Fläche zwischen 0 und unedlich eins. Ich habe folgende Verteilungsfunktion D(x)= -e^(-2x)* (2x+1) für x>= 0 heraus.
b) Ich brauche den Erwartungswert E(x) und die Standardabweichung sigma. Da d(x) eine stetige Verteilung ist gilt:

E(x)= INTEGRAL in den Grenzen 0 und unedlich von x*d(x) dx = 1

Jedoch kriege ich das ganze nicht für Sigma hin, denn da gilt ja:
Sigma=WURZEL V(X)
und V(X)= INTEGRAL in den Grenzen 0 und unendlich von [mm] (x-E(X))^2 [/mm] * d(x) dx = [mm] (x-1)^2 [/mm] * d(x) dx. Das habe ich irgendwie nicht mehr integriert bekommen. Gibt es eine andere Möglichkeit Sigma herauszubekommen???? Folglich konnte ich die Wahrscheinlichkeiten nicht ausrechnen. Aber die auszurechnen ist ja nicht sonderlich schwierig, da muss man ja nur ein bestimmtes Integral lösen.

c) Da habe ich mit Hilfe der Analysis d(x) abgeleitet, d'(x)= 4e^(-2x)* (1-2x), deshalb habe ich eine Extremstelle (ein globales Maximum, da x>=0) bei xM= 0,5 heraus. Aber warum unterscheiden sich Erwartungswert und Maximum so stark??? Es ist doch normalerweise so, dass der Erwartungswert auch das Maximum der jeweiligen Dichtefunktion darstellt (z.B. Normalverteilung).  Also keine Ahnung???????

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also Leute wäre echt nett, wenn mir jmd helfen würde. Danke sehr.

ciao

jkwon

        
Bezug
Dichtefunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 17.04.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de