www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Dichtetransformationssatz
Dichtetransformationssatz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dichtetransformationssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Mo 01.08.2011
Autor: el_grecco

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Sei X eine Zufallsvariable und folge einer Weibull-Verteilung mit Parametern $\alpha > 0$ und $\beta > 0$, d.h. mit Dichte

$f(x)=\alpha \beta x^{\beta-1}\exp(-\alpha x^{\beta})I(x \ge 0).$

Welcher Verteilung folgt $Y=X^{\beta}$? Bestimmen Sie hierzu die Dichte von Y und suchen Sie diese im Vorlesungsskript.

Hallo,

ich kann bei dieser Lösung nur die Zeile $ Y=g(X)=X^{\beta} \gdw X=g(X)^{\beta} \gdw g^{-1}(X) \gdw g^{-1}(Y) = Y^{\bruch{1}{\beta}} $ nicht nachvollziehen. Das Ende dieser Zeile $g^{-1}(Y) = Y^{\bruch{1}{\beta}}$ leuchtet mir ein, ich sehe nur nicht, warum man X und g(X) einfach vertauschen darf (nach dem ersten $\gdw$), denn das grenzt doch an Pfuscherei... Wie seht Ihr das?


Hier ist die vollständige Lösung:


Dichtetransformationssatz, welcher beschreibt, wie man auf einfache Weise die Dichtefunktion von $Y=g(X)$ berechnen kann:

Sei g streng monoton und differenzierbar. Dann kann man die Dichte $f_{Y}(y)$ mit Hilfe des Transformationssatzes berechnen:

$f_{Y}(y)=f_{X}(g^{-1}(y))*\underbrace {\left| \bruch{dg^{-1}(y)}{dy} \right|}_{g^{-1}'(y)}$


$Y=g(X)=X^{\beta} \gdw X=g(X)^{\beta} \gdw g^{-1}(X) \gdw g^{-1}(Y) = Y^{\bruch{1}{\beta}}$

$\bruch{dg^{-1}(y)}{dy}=\bruch{1}{\beta}*Y^{\bruch{1}{\beta}-1}=\bruch{1}{\beta}*Y^{\bruch{1}{\beta}}*Y^{-1}$

$f_{Y}(y)=f_{X}(g^{-1}(y))*\underbrace {\left| \bruch{dg^{-1}(y)}{dy} \right|}_{g^{-1}'(y)}=$

$=\alpha*\beta(Y^{\bruch{1}{\beta}})^{\beta -1}*\exp(-\alpha(Y^{\bruch{1}{\beta}})^{\beta})*\bruch{1}{\beta}*Y^{\bruch{1}{\beta}}}*Y^{-1}=$

$=\alpha*\beta*Y^{\bruch{\beta-1}{\beta}}*\exp(-\alpha*Y)*\bruch{1}{\beta}*Y^{\bruch{1}{\beta}}*Y^{-1}=$

$=\alpha*Y*Y^{-\bruch{1}{\beta}}*\exp(-\alpha*Y)*Y^{\bruch{1}{\beta}}*Y^{-1}=$

$=\alpha*\exp(-\alpha*Y)$

$\Rightarrow$ exponentialverteilt mit $\lambda=\alpha$


Vielen Dank für Eure Mühe!


Gruß
el_grecco


        
Bezug
Dichtetransformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 01.08.2011
Autor: blascowitz

Hallo,

ich hab jetzt mal ein bisschen rumgerechnet und die Zeile ist offensichtlich falsch.
Beispielsweise kann die Richtung [mm] $\Leftarrow$ [/mm] nicht richtig sein, denn wäre [mm] $X=g(x)^{\beta}$ [/mm] so wäre [mm] $Y^{\beta}=g(X)^{\beta}=X$, [/mm] dabei sollte das ja genau anders herum.

Was da ja ausgerechnet werden soll, ist die Umkehrfunktion der Abbildung [mm] $x\rightarrow x^{\beta}$. [/mm] Die ist bei dieser Transformation ziemlich offensichtlich, des es gilt ja: die Funktion $f: x [mm] \rightarrow x^{\beta}$ [/mm] ist bijektiv mit Umkehrabbildung $g: [mm] x\rightarrow x^{\frac{1}{\beta}}$ [/mm] für [mm] $\beta [/mm] > 0$

Viele Grüße

Bezug
                
Bezug
Dichtetransformationssatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Mo 01.08.2011
Autor: el_grecco

Hallo blascowitz,

vielen Dank für Deine Antwort.
Es ist echt traurig, was manche Übungsleiter fabrizieren...


Gruß
el_grecco


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de