Die Räume C[a,b] und L_2[a,b] < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:29 So 18.11.2007 | Autor: | ThommyM |
Ich grübel hier vor einem stochastisch/funktionalanalytischen Problem. Und zwar stelle ich mir die Frage, ob der Raum C[a,b] der auf dem Intervall [a,b] stetigen Funktionen, die zusätzlich (b-a) - periodisch sind, in dem Hilbertraum [mm] L_2[a,b] [/mm] enthalten ist, also dem Raum der messbaren Funktionen auf [a,b], für die das Lebesgue-Integral [mm] \integral_{a}^{b}{|f(x)|^2 dx} [/mm] existiert.
Auf jeden Fall ist es ja so, dass wenn man die konstante Funktion f(x)=1 nimmt, dass diese auf ganz [mm] \IR [/mm] nicht Lebesgue-integrierbar ist und somit ja auch nicht quadratintegrierbar. Aber was ist, wenn man sich auf das Intervall [a,b] beschränkt. Ich suche die ganze Zeit ein Beispiel für eine solche periodische, stetige Funktion, die nicht quadrat-integrierbar ist. Vielleicht kann mir ja jemand helfen?!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:09 So 18.11.2007 | Autor: | andreas |
hi
wenn ich dich recht verstehe, möchtest du wissen, ob $C([a, b]) [mm] \subseteq L_2([a, [/mm] b])$ gilt, wobei $[a, b]$ ein kompaktes invervall ist? dann ist die frage mit ja zu beantworten: stetige funktionen sind lebesgue-messbar und nach einem satz von weierstrass sind stetige funktionen auf kompakten mengen beschränkt, das heißt es gibt ein $M < [mm] \infty$ [/mm] mit $|f(x)| [mm] \leq [/mm] M$ für $x [mm] \in [/mm] [a, b]$. und da das lebesgue-maß von $[a, b]$ endlich ist, ist somit das integral endlich.
mir ist allerdings etwas unklar, was du hier mit periodizität willst - davon merkt man auf diesem intervall nichts?
grüße
andreas
|
|
|
|