www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Diff. vektorwertige Funktion
Diff. vektorwertige Funktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diff. vektorwertige Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:38 Sa 25.04.2015
Autor: dodo1924

Aufgabe
Benutzen Sie die Definition der Differenzierbarkeit um zu beweisen, dass die Funktion [mm] f:\IR^3->\IR^3 [/mm] mit [mm] f(x,y,z)=(xz-y,x^2+z,x+2y)^t [/mm] im Punkt a=(0,0,0) differenzierbar ist.
Zusatzfrage: Lässt sich die Ableitung Df(a) auch ohne partielle Ableitung bestimmen?

Habe die Differenzierbarkeit einmal mit folgender Eigenschaft gezeigt:
[mm] f:\IR^3->\IR^3 [/mm] diff. in [mm] x_0 \gdw f_i:\IR^3->\IR [/mm] diff. in [mm] x_0 [/mm] mit i=1...3

meine 3 Funktionskomponenten:
[mm] f_1(x,y,z)=xz-y [/mm]
[mm] f_2(x,y,z)=x^2+z [/mm]
[mm] f_3(x,y,z)=x+2y [/mm]

Aus meiner Ursprungsfunktion ergibt sich folgende Jacobi-Matrix:

[mm] Jf(a)=\pmat{ z & -1 & x \\ 2x & 0 & 1 \\ 1 & 2 & 0 } [/mm]

sei [mm] x_0=(0,0,0) [/mm]
daraus folgt ja [mm] Jf(0,0,0)=\pmat{ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0 } [/mm]

aus dieser Matrix kann ich dann ja schon mal die partiellen Ableitungen meiner [mm] f_i [/mm] ablesen, also sind sie schon mal partiell differenzierbar!

Außerdem sind alle [mm] f_i [/mm] stetig im Punkt (0,0,0), da gilt:

sei [mm] (x_n, y_n, z_n)\to(0,0,0)=x_0 [/mm]

[mm] \Rightarrow \limes_{(x_n, y_n, z_n)\rightarrow x_0}f_1(x_n, y_n, z_n)=\limes_{(x_n, y_n, z_n)\rightarrow x_0} x_nz_n-y_n=0*0-0=0 [/mm]
analog für [mm] f_2 [/mm] und [mm] f_3 [/mm]

damit sind alle [mm] f_i [/mm] auch stetig in [mm] x_0, [/mm] also sind alle [mm] f_i [/mm] differenzierbar in [mm] x_0, [/mm] also ist auch f differenzierbar in [mm] x_0 [/mm]
----------------------------------------------------------

anderer Ansatz (bei welche ich noch nicht voll durchblicke):
f ist ja auch im Punkt [mm] x_0 [/mm] differenzierbar, wenn folgende Gleichung gilt:

[mm] \limes_{x\rightarrow x_0}\bruch{f(x)-f(x_0)-Jf(x_0)(x-x_0)}{||x-x_0||}=0 [/mm]

sei nun [mm] x_0=(0,0,0), [/mm] in die Gleichung eingesetzt:
[mm] \limes_{x\rightarrow x_0}\bruch{(xz-y,x^2+z,x+2y)^t-(0,0,0)^t-\pmat{ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0 }(x,y,z)^t}{\wurzel{x^2+y^2+z^2}}= [/mm]

[mm] \limes_{x\rightarrow x_0}\bruch{(xz-y,x^2+z,x+2y)^t-(-y,z,x+2y)^t}{\wurzel{x^2+y^2+z^2}} [/mm] = [mm] \limes_{x\rightarrow x_0}\bruch{1}{\wurzel{x^2+y^2+z^2}}*\vektor{xz \\ x^2 \\ 0} [/mm]

und jetzt habe ich keine Ahnung, wie ich da weitermachen sollte....??

Und zur Zusatzfrage: wie kann ich denn noch anders Differenzierbarkeit zeigen?


        
Bezug
Diff. vektorwertige Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 So 26.04.2015
Autor: fred97


> Benutzen Sie die Definition der Differenzierbarkeit um zu
> beweisen, dass die Funktion [mm]f:\IR^3->\IR^3[/mm] mit
> [mm]f(x,y,z)=(xz-y,x^2+z,x+2y)^t[/mm] im Punkt a=(0,0,0)
> differenzierbar ist.
>  Zusatzfrage: Lässt sich die Ableitung Df(a) auch ohne
> partielle Ableitung bestimmen?
>  Habe die Differenzierbarkeit einmal mit folgender
> Eigenschaft gezeigt:
>  [mm]f:\IR^3->\IR^3[/mm] diff. in [mm]x_0 \gdw f_i:\IR^3->\IR[/mm] diff. in
> [mm]x_0[/mm] mit i=1...3
>  
> meine 3 Funktionskomponenten:
>  [mm]f_1(x,y,z)=xz-y[/mm]
>  [mm]f_2(x,y,z)=x^2+z[/mm]
>  [mm]f_3(x,y,z)=x+2y[/mm]
>  
> Aus meiner Ursprungsfunktion ergibt sich folgende
> Jacobi-Matrix:
>  
> [mm]Jf(a)=\pmat{ z & -1 & x \\ 2x & 0 & 1 \\ 1 & 2 & 0 }[/mm]
>  
> sei [mm]x_0=(0,0,0)[/mm]
>  daraus folgt ja [mm]Jf(0,0,0)=\pmat{ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0 }[/mm]
>  
> aus dieser Matrix kann ich dann ja schon mal die partiellen
> Ableitungen meiner [mm]f_i[/mm] ablesen, also sind sie schon mal
> partiell differenzierbar!
>  
> Außerdem sind alle [mm]f_i[/mm] stetig im Punkt (0,0,0), da gilt:
>  
> sei [mm](x_n, y_n, z_n)\to(0,0,0)=x_0[/mm]
>  
> [mm]\Rightarrow \limes_{(x_n, y_n, z_n)\rightarrow x_0}f_1(x_n, y_n, z_n)=\limes_{(x_n, y_n, z_n)\rightarrow x_0} x_nz_n-y_n=0*0-0=0[/mm]
>  
> analog für [mm]f_2[/mm] und [mm]f_3[/mm]
>  
> damit sind alle [mm]f_i[/mm] auch stetig in [mm]x_0,[/mm] also sind alle [mm]f_i[/mm]
> differenzierbar in [mm]x_0,[/mm] also ist auch f differenzierbar in
> [mm]x_0[/mm]



Das ist O.K.


>  
> ----------------------------------------------------------
>  
> anderer Ansatz (bei welche ich noch nicht voll
> durchblicke):
>  f ist ja auch im Punkt [mm]x_0[/mm] differenzierbar, wenn folgende
> Gleichung gilt:
>  
> [mm]\limes_{x\rightarrow x_0}\bruch{f(x)-f(x_0)-Jf(x_0)(x-x_0)}{||x-x_0||}=0[/mm]
>  
> sei nun [mm]x_0=(0,0,0),[/mm] in die Gleichung eingesetzt:
>  [mm]\limes_{x\rightarrow x_0}\bruch{(xz-y,x^2+z,x+2y)^t-(0,0,0)^t-\pmat{ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 0 }(x,y,z)^t}{\wurzel{x^2+y^2+z^2}}=[/mm]
>  
> [mm]\limes_{x\rightarrow x_0}\bruch{(xz-y,x^2+z,x+2y)^t-(-y,z,x+2y)^t}{\wurzel{x^2+y^2+z^2}}[/mm]
> = [mm]\limes_{x\rightarrow x_0}\bruch{1}{\wurzel{x^2+y^2+z^2}}*\vektor{xz \\ x^2 \\ 0}[/mm]
>  
> und jetzt habe ich keine Ahnung, wie ich da weitermachen
> sollte....??
>  
> Und zur Zusatzfrage: wie kann ich denn noch anders
> Differenzierbarkeit zeigen?





Zeige

[mm] \bruch{|xz|}{\wurzel{x^2+y^2+z^2}} \le [/mm] |z|

und

[mm] \bruch{x^2}{\wurzel{x^2+y^2+z^2}} \le [/mm] |x|

FRED

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de