www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Diffbarkeit
Diffbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 09.01.2006
Autor: DeusRa

Aufgabe
Zu vorgegebener natürlicher Zahl n betrachen wir die Fkt. f: [mm] \IR \to \IR [/mm] mit
[mm] f(n)=\begin{cases} 0, & \mbox{für } x\le0 \mbox{} \\ x^{n}, & \mbox{für } x>0 \mbox{} \end{cases} [/mm]

Zeigen Sie, dass diese Fkt (n-1)-mal diffbar ist, aber nicht n-mal, und berechnen Sie die Ableitungen [mm] f^{(k)} [/mm] für [mm] 1\lek

Ich weiß nicht wie ich an diese Aufgabe dran gehen soll.
Wie zeigt man, dass etwas diffbar ist. ??
Über Induktion ?
Außerdem komme ich selber intuitiv zu dem Schluss, dass es n-mal diffbar ist, was ja eigentlich nicht sein kann.
Danke

        
Bezug
Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Mo 09.01.2006
Autor: Julius

Hallo!

Leicht zeigt man (über die Betrachtung der Differentialquotienten im Nullpunkt) die $(n-1)$-fache Differenzierbarkeit und

[mm] $f^{(k)}(x) [/mm] = [mm] \left\{ \begin{array}{ccc} 0 & , & x \le 0\\[5pt] \frac{n!}{(n-k)!} x^{n-k} & , & x>0. \end{array} \right.$ [/mm]

für [mm] $k=0,1,\ldots,n-1$. [/mm]

Insbesondere ist

[mm] $f^{(n-1)}(x) [/mm] = [mm] \left\{ \begin{array}{ccc} 0 & , & x \le 0\\[5pt] n! x & , & x>0. \end{array} \right.$ [/mm]

Diese Funktion ist in $x=0$ nicht differenzierbar, wie die Betrachtung des links- bzw. rechtsseitigen Differentialquotienten leicht offenbart.

Liebe Grüße
Julius


Bezug
                
Bezug
Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 Mo 09.01.2006
Autor: DeusRa

Hmm........
ich verstehe ich es noch nicht ganz.
Also die Ableitungen verstehe ich ja schon.

Aber wie zeigt man, dass die f(x)-Fkt (n-1)-mal diffbar ist, aber nicht n-mal.
Wäre nett, wenn mir das noch jemand erklären könnte.

Bezug
                        
Bezug
Diffbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Mo 09.01.2006
Autor: Julius

Hallo!

Bilde doch mal den links- und rechtsseitigen Differentialquotienten von [mm] $f^{(n-1)}$ [/mm] in $x=0$. Was fällt dir auf?

Liebe Grüße
Julius

Bezug
                                
Bezug
Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mo 09.01.2006
Autor: DeusRa

Ok, also mit Diffquotienten meinst du wohl

[mm] \limes_{h\rightarrow 0} \bruch{f(x+h)-f(x)}{h} [/mm]
mit x=0 folgt:
[mm] \limes_{h\rightarrow 0} \bruch{f(h)-f(0)}{h}= [/mm]
[mm] \limes_{h\rightarrow 0} \bruch{f(h)-0}{h}= [/mm]
[mm] \limes_{h\rightarrow 0} \bruch{0}{h}=0. [/mm]

Ich weiß um ehrlich zu sein nicht genau was du mit Diffquotient meinst, da wir das in der Vorlesung noch nicht hatten.
Habe die Diffquot. aus dem Netz.
Was bedeutet es, wenn beim lim Null rauskommt.
Was ist die Aussage davon.

Bezug
                                        
Bezug
Diffbarkeit: und nun von rechts
Status: (Antwort) fertig Status 
Datum: 15:03 Mo 09.01.2006
Autor: Roadrunner

Hallo Rados!


Das mit dem Differenzenquotienten war schon sehr richtig. Hierbei handelt es sich aber lediglich um den linksseitigen Grenzwert mit $h \ < \ 0$, d.h. hier gilt: [mm] $f^{(n-1)}(h) [/mm] \ = \ 0$ (wie Du auch richtig eingesetzt hast).


Nun betrachte den rechtsseitigen Grenzwert mit $h \ > \ 0$.
Denn dort gilt: [mm] $f^{(n-1)}(h) [/mm] \ = \ n!*h$ (siehe Julius' Antwort).

Was erhältst Du nun als Grenzwert?


[aufgemerkt] Und nur wenn diese beiden Grenzwerte übereinstimmen, ist die entsprechende Funktion an der Stelle [mm] $x_0$ [/mm] auch differenzierbar.


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Diffbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 09.01.2006
Autor: DeusRa

Na gut,
dann wollen wir mal:

also
jetzt muss man den rechtsseitigen Diffquot. zeigen.
Also

[mm] \limes_{h\rightarrow\infty} \bruch{f(x+h)-f(x)}{h} [/mm] mit x=0 folgt:
[mm] \limes_{h\rightarrow \infty} \bruch{f(h)-f(0)}{h}= [/mm]
[mm] \limes_{h\rightarrow \infty} \bruch{f(h)}{h}= [/mm]
[mm] \limes_{h\rightarrow \infty} \bruch{h^{n}}{h}= [/mm]
[mm] h^{n-1}. [/mm]
Also das kommt bei mir raus.
Da der linksseitige Diffquot. Null ist und der rechtsseitige [mm] h^{n-1} [/mm] für x=0 ergibt ist die Funktion an x=0 nicht diffbar, wenn ich es richtig verstanden habe.

Nun gut.
Kann ich jetzt einfach daraus folgern, dass die Fkt. f(x) n-1 mal diffbar ist, weil am Punkte Null es keine diffbarkeit gibt, bzw. dort nicht diffbar ist und somit quasi eine diffbarkeit "fehlt" ?
(Wieso könnte man dann ausschließen, dass an den Restlichen Stellen diffbarkeit vorliegt ?)

Bezug
                                                        
Bezug
Diffbarkeit: Korrekturen
Status: (Antwort) fertig Status 
Datum: 16:57 Mo 09.01.2006
Autor: Roadrunner

Hallo Rados!


Einige Korrekturen ...


Zunächst einmal wird beim Differenzenquotienten grundsätzlich der Grenzwert betrachtet für $h [mm] \rightarrow\red{0}$ [/mm] .

Dann sind wir gerade bei der $(n-1)_$. Ableitung [mm] $f^{(n-1)}$ [/mm] . Dort gilt für [mm] $x\ge [/mm] 0$ : [mm] $f^{(n-1)}(x) [/mm] \ = \ n!*x$ .


> [mm]\limes_{h\rightarrow \infty} \bruch{f(h)}{h}=[/mm] [mm]\limes_{h\rightarrow \infty} \bruch{h^{n}}{h}=[/mm]

[notok] Siehe oben:

[mm] $\limes_{h\rightarrow 0}\bruch{f^{(n-1)}(0+h)-f^{(n-1)}(0)}{h} [/mm] \ = \ [mm] \limes_{h\rightarrow 0}\bruch{n!*h-0}{h} [/mm] \ = \ n! \ [mm] \not= [/mm] \ 0$


> Da der linksseitige Diffquot. Null ist und der
> rechtsseitige [mm]h^{n-1}[/mm] für x=0 ergibt ist die Funktion an
> x=0 nicht diffbar, wenn ich es richtig verstanden habe.

[ok] Prinzipiell richtig verstanden!


> Kann ich jetzt einfach daraus folgern, dass die Fkt. f(x)
> n-1 mal diffbar ist, weil am Punkte Null es keine
> diffbarkeit gibt, bzw. dort nicht diffbar ist und somit
> quasi eine diffbarkeit "fehlt" ?

Nein, diese Argumentation ist falsch! Für jede andere Ableitung (und die Ausgangsfunktion) stimmen die beiden Grenzwerte des Differenzenquotienten (linksseitig und rechtsseitig) an der Stelle [mm] $x_0 [/mm] \ = \ 0$ überein.

Probiere das mal aus (beachte dabei Julius' Antwort über die $k_$-te Ableitung [mm] $f^{(k)}(x)$ [/mm] ...)!


> (Wieso könnte man dann ausschließen, dass an den
> Restlichen Stellen diffbarkeit vorliegt ?)

Weil sich hier die Funktion aus beliebig oft differenzierbaren Teilfunktionen zusammensetzt. Daher ist lediglich die Nahtstelle bei [mm] $x_0 [/mm] \ = \ 0$ relevant und interessant.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de