www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Diffenzierbarkeit +injektiv
Diffenzierbarkeit +injektiv < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diffenzierbarkeit +injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mo 10.11.2008
Autor: Bodo0686

Aufgabe
Sei g:(-1,1) -> [mm] \IR [/mm] differenzierbar und es gebe ein M [mm] \ge [/mm] 0 mit |g'(a)| [mm] \le [/mm] M [mm] \forall [/mm] a [mm] \in(-1,1) [/mm]

Zeige: Es gibt ein [mm] \varepsilon [/mm] >0, so dass die Abbildung f:x [mm] \in [/mm] (-1,1) [mm] \mapsto [/mm] x [mm] +\varepsilon [/mm] g(x) [mm] \in \IR [/mm] injektiv ist.

Hallo,


diese Aufgabe sagt doch, dass ich eine Funktion habe die ich einmal ableite mit einem Funktionswert aus (-1,1) und dieses das betraglich kleiner gleich ein M sein soll.

Für die injektivität gilt:

f heißt injektiv, wenn aus der Gleichheit von Funktionswerten die Gleichheit der in die Funtkion eingesetzten x-Werte folgt. [mm] \froall x_1 [/mm] , [mm] x_2 \in [/mm] X: [mm] (f(x_1)=f(x_2)) [/mm] -> [mm] x_1=x_2) [/mm]



Hat jemand eine Idee, wie ich diese Aufgabe lösen könnte, Danke!

Grüße

        
Bezug
Diffenzierbarkeit +injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Mo 10.11.2008
Autor: fred97

Wähle [mm] \epsilon [/mm] >0 so ,dass [mm] \epsilon [/mm] < 1/M , etwa [mm] \epsilon [/mm] = [mm] \bruch{1}{2M}. [/mm]

Mit den Dreiecksungleichungen folgt :

0< [mm] 1-\epsilon [/mm] M [mm] \le [/mm] 1 - [mm] \epsilon [/mm] |g'(x)| [mm] \le [/mm] |1+ [mm] \epsilon [/mm] g'(x)| = |f'(x)| für x in (-1,1),

also hat f' auf (-1,1) keine Nullstelle.

Sei nun [mm] x_1, x_2 \in [/mm] (-1,1) und [mm] f(x_1) [/mm] = [mm] f(x_2). [/mm] Wäre [mm] x_1 \not= x_2, [/mm] so würde aus dem Mittelwersatz folgen: f' hat eine Nullstelle zwischen [mm] x_1 [/mm] und [mm] x_2, [/mm] Widerspruch


FRED

Bezug
                
Bezug
Diffenzierbarkeit +injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:12 Mo 10.11.2008
Autor: Bodo0686

Warum wähle ich denn [mm] \varepsilon [/mm] <1/M ?
Hat das irgendwas mit dem Intervall (-1,1) zutun?
Grüße

Bezug
                        
Bezug
Diffenzierbarkeit +injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Mo 10.11.2008
Autor: fred97


> Warum wähle ich denn [mm]\varepsilon[/mm] <1/M ?


Damit 0< $ [mm] 1-\epsilon [/mm] $ M


FRED



>  Hat das irgendwas mit dem Intervall (-1,1) zutun?
>  Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de