www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Differentail 1. Ordnung
Differentail 1. Ordnung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentail 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Do 23.06.2005
Autor: marrrtina

Hallo... meine Aufgabe:
Man bestimme das Differential 1. Ordnung der Folgenden Funktion:
f(x)= arsinh [mm] \wurzel{4x-1} [/mm]
mein eigentliches Problem ist, das ich nicht genau verstanden hab was das Differential eigentlich ist.
gruss
m.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Differentail 1. Ordnung: Vermutung
Status: (Antwort) fertig Status 
Datum: 18:49 Do 23.06.2005
Autor: logarithmus

Hi,

so wie ich das verstanden habe, hat man die 1. Ableitung von f nach x : f'(x) = [mm] \bruch{d f}{dx}(x). [/mm] Dann ist das totale Differential (1. Ordnung) : dy = f'(x) dx.

Gruss,
logarithmus

Bezug
                
Bezug
Differentail 1. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Do 23.06.2005
Autor: marrrtina

hallo nochmal,
formal hab ich das schon gesehen und es sieht logisch aus, aber was steckt hinter den einzelnen Grössen dx und dy? Und welche der Grössen aus meinem Beispiel muss ich verwenden für dx und dy?
kann mir das nochmal jemand genauer erklären?
danke ... gruss
m.

Bezug
                        
Bezug
Differentail 1. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Do 23.06.2005
Autor: logarithmus

Hallo,

dx = [mm] x-x_0 [/mm] für ein gegebens [mm] x_0 \in \IR. [/mm] Wir wollen f(x) in einer Umgebung von [mm] x_0 [/mm] durch eine andere Funktion approxomieren, möglichst eine lineare Funktion. Die Differenz der Funktionswerte [mm] \Delta [/mm] y = [mm] f(x)-f(x_0) \approx [/mm] dy = [mm] f'(x_0)dx [/mm] ,
also dy = [mm] f'(x_0)(x-x_0). [/mm]

Jetzt bleibt nur noch f(x) zu differenzieren. Dabei ist es wissenswert, dass die Funktion Arsinh : [mm] \IR \to \IR [/mm] die Umkehrfunktion von sinh: [mm] \IR \to \IR, [/mm] und es gilt: Arsinh(x) = [mm] ln(x+\sqrt{x^2+1}), [/mm] was das Differenzieren wesentlich erleichtert.

Gruss,
logarithmus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de